
The L

a

T

E

Xinfo Documentation Format

Version 1.7

Richard M. Stallman and Robert J. Chassell

The Free Software Foundation,

675 Massachusetts Ave., Cambridge MA,

Michael Clarkson

Centre for Earth and Space Science,

York University,

North York, Ontario, M3J 1P3

February 26, 1992

Copyright
c
 1988, 1990, 1991 Free Software Foundation, Inc.

Copyleft
c
 1988, 1989, 1990, 1991 Michael E. Clarkson.

This is version 1.7 of the L

a

T

E

Xinfo documentation, and is for Version 18 of GNU Emacs.

This is the second edition of the L

a

T

E

Xinfo documentation, and is also consistent with version

2 of Texinfo documentation `texinfo.tex'.

Permission is granted to make and distribute verbatim copies of this manual provided the

copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the

conditions for verbatim copying, provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-

guage, under the above conditions for modi�ed versions, except that this permission notice

may be stated in a translation approved by the Foundation.

Contents

1 Overview of LaTeXinfo 3

1.1 Advantages of LaTeXinfo over TeXinfo : 4

1.2 Info �les : 5

1.3 Printed Manuals : 6

1.4 \-commands : 6

1.5 A Short Sample LaTeXinfo File : 8

1.6 The Structure of this Manual : 11

I LaTeX 13

2 Beginning a LaTeXinfo File 15

2.1 General Syntactic Conventions : 15

2.2 What a LaTeXinfo File Must Have : 16

2.3 Six Parts of a LaTeXinfo File : 17

2.4 The LaTeXinfo File Header : 18

2.5 The Title and Copyright Pages : 20

2.6 Generating a Table of Contents : 22

2.7 The Top Node and Master Menu : 23

2.8 Software Copying Conditions : 25

2.9 Ending a LaTeXinfo File : 26

3 Chapter Structuring 31

3.1 Tree Structure of Sections : 31

3.2 Types of Structuring Command : 33

3.3 Chapter : 33

3.4 Appendix : 33

3.5 Section : 33

3.6 Subsection : 34

3.7 Subsubsection : 34

i

ii CONTENTS

4 Marking Words and Phrases 35

4.1 Indicating De�nitions, Commands, etc. : 35

4.2 Emphasizing Text : 41

4.3 Special Insertions : 42

5 Displaying Material 47

5.1 Quotations : 48

5.2 Justifying Text : 49

5.3 Display Environments : 50

5.4 Examples and Verbatim : 50

5.5 Controlling Indentation : 53

5.6 Drawing Cartouches Around Examples : 53

5.7 Special Glyphs for Examples : 54

5.8 Conditionally Visible Text : 57

6 Making Lists Tables and Descriptions 59

6.1 Itemize Environment : 60

6.2 Enumerate Environment : 60

6.3 Description Environment : 61

6.4 Tabular Environment : 62

6.5 Figures and Tables : 63

7 Formatting Paragraphs 65

7.1 Making and Preventing Breaks : 65

7.2 The Line Breaking Commands : 65

7.3 The Page Breaking Commands : 67

7.4 Re�lling Paragraphs : 68

7.5 Always Re�lling Paragraphs : 69

8 Citations and Footnotes 71

8.1 Footnotes : 71

8.2 Citations : 72

9 Input and Include Files 73

9.1 Input Files : 73

9.2 Include Files : 73

10 De�nition Commands 77

10.1 Untyped Languages De�nition Commands : 78

10.2 C Functions : 82

10.3 Object-Oriented Programming : 85

10.4 A Sample Function De�nition : 88

CONTENTS iii

II Info 91

11 Nodes and Menus 93

11.1 Node and Menu Illustration : 93

11.2 \node : 94

11.3 Menu Environment : 96

11.4 Referring to Other Info Files : 99

12 Making Cross References 101

12.1 Di�erent Cross Reference Commands : 101

12.2 Parts of a Cross Reference : 102

12.3 \xref : 103

12.4 Naming a `Top' Node : 108

12.5 \nxref : 108

12.6 \pxref : 109

12.7 \inforef : 110

13 Creating Indices 113

13.1 Making Index Entries : 113

13.2 De�ning the Entries of an Index : 114

13.3 Combining Indices : 116

14 Creating and Installing an Info File 119

14.1 Creating an Info �le : 119

14.2 Installing an Info File : 121

III Emacs 125

15 Using LaTeXinfo Mode 127

15.1 Inserting Frequently Used Commands : 128

15.2 Showing the Section Structure of a File : 129

15.3 Updating Nodes and Menus : 129

15.4 Formatting for Info : 134

15.5 Formatting and Printing : 135

15.6 LaTeXinfo Mode Summary : 136

16 Printing Hardcopy 139

16.1 How to Print Using Shell Commands : 139

16.2 Printing from an Emacs Shell : 141

16.3 Formatting and Printing in LaTeXinfo Mode : : : : : : : : : : : : : : : : : : : 141

16.4 Using the Local Variables List : 142

16.5 Preparing for Use of L

a

T

E

X : 143

16.6 Overfull \Hboxes" : 143

iv CONTENTS

17 Catching Formatting Mistakes 145

17.1 Catching Errors with Info Formatting : 145

17.2 Catching Errors with L

a

T

E

X Formatting : 146

17.3 Using latexinfo-show-structure : 147

17.4 Using occur : 148

17.5 Finding Badly Referenced Nodes : 149

18 Extending LaTeXinfo 153

18.1 Optional Style Files : 153

18.2 LaTeXinfo support for European languages : 157

18.3 Writing Your Own Style Files : 160

IV Appendices 161

A Installing LaTeXinfo 163

A.1 Compiling LaTeXinfo : 163

A.2 Installing the LaTeXinfo Distribution : 165

B Converting Files to LaTeXinfo 167

B.1 Converting LaTeX Files to LaTeXinfo : 167

B.2 Converting TeXinfo Files into LaTeXinfo Files : : : : : : : : : : : : : : : : : : 169

B.3 Converting Scribe Files to LaTeXinfo : 171

C Obtaining L

a

T

E

X 173

D Command List 175

Command Index 187

Concept Index 191

List of Tables

6.1 The First Table's Caption : 63

10.1 The De�nition Commands : 77

16.1 Formatting a Bu�er Commands : 142

16.2 Formatting a Document Commands : 143

18.1 The Clisp De�nition Commands : 155

v

LaTeXinfo Copying Conditions

The programs currently being distributed that relate to L

a

T

E

Xinfo include portions of GNU

Emacs, plus other separate programs (including latexinfo.sty, latexindex, and info).

These programs are free; this means that everyone is free to use them and free to redistribute

them on a free basis. The Latexinfo-related programs are not in the public domain; they are

copyrighted and there are restrictions on their distribution, but these restrictions are designed

to permit everything that a good cooperating citizen would want to do. What is not allowed

is to try to prevent others from further sharing any version of these programs that they might

get from you.

Speci�cally, we want to make sure that you have the right to give away copies of the

programs that relate to L

a

T

E

Xinfo, that you receive source code or else can get it if you want

it, that you can change these programs or use pieces of them in new free programs, and that

you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of

these rights. For example, if you distribute copies of the L

a

T

E

Xinfo related programs, you must

give the recipients all the rights that you have. You must make sure that they, too, receive or

can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone �nds out that there is

no warranty for the programs that relate to LaTeXinfo. If these programs are modi�ed by

someone else and passed on, we want their recipients to know that what they have is not what

we distributed, so that any problems introduced by others will not reect on our reputation.

The precise conditions of the licenses for the programs currently being distributed that

relate to L

a

T

E

Xinfo are found in the General Public Licenses that accompany them.

1

2 LaTeXinfo Copying Conditions

Chapter 1

Overview of LaTeXinfo

L

a

T

E

Xinfo

1

is a documentation system that uses a single source �le to produce both on-line

help (and other information) and a printed manual. This means that instead of writing two

di�erent documents, one providing on-line information and the other for a printed manual, you

need write only one document. When the system is revised, you need revise only one document.

You can print the manual with most laser printers, and you can read the on-line help, known

as an Info �le, with the Info documentation-reading programs. These documentation-reading

programs are available for use under GNU Emacs, under X-windows, or for termcap based

ordinary terminals.

Using L

a

T

E

Xinfo, you can create a printed document with the normal features of a book,

including chapters, sections, cross references, and indices. From the same L

a

T

E

Xinfo source �le,

you can create a menu-driven, on-line Info �le with nodes, menus, cross references, and indices.

You can, if you wish, make the chapters and sections of the printed document correspond to

the nodes of the on-line information, and use the same cross references and indices for both

the Info �le and the printed document.

To make a printed manual, process a L

a

T

E

Xinfo source �le with the L

a

T

E

X typesetting

program. This creates a dvi �le that you can typeset and print as a book. To create an Info

�le, you process a L

a

T

E

Xinfo source �le with Emacs's latexinfo-format-buffer command;

this creates an Info �le that you can install on-line.

Info works with almost every type of computer terminal; similarly, L

a

T

E

X works with many

types of printer. This power makes L

a

T

E

Xinfo a general purpose system, but brings with

it a constraint, which is that a L

a

T

E

Xinfo �le may contain only the customary \typewriter"

characters (letters, numbers, spaces, and punctuation marks) but no special graphics.

A L

a

T

E

Xinfo �le is a plain ascii �le containing text and \-commands (words preceded by an

`\') that tell the typesetting and formatting programs what to do. You may edit a L

a

T

E

Xinfo

�le with any text editor; but it is especially convenient to use GNU Emacs since that editor

has a special mode, called L

a

T

E

Xinfo mode, that provides various L

a

T

E

Xinfo-related features.

1

Note that the �rst syllable of \texinfo" is pronounced like \speck", not \hex". This odd pronunciation is

derived from L

a

T

E

X, in which the `X' is actually the Greek letter \chi" rather than the English letter \ex" (the

`T' and `E' are Greek letters also, but they happen to be pronounced the same way in Greek as in English).

3

4 CHAPTER 1. OVERVIEW OF LATEXINFO

(See section 15 [LaTeXinfo Mode], page 127.)

Before writing a L

a

T

E

Xinfo source �le, you should become familiar with the Info documen-

tation reading program and learn about nodes, menus, cross references, and the rest. On Unix

systems, these programs are called info for terminals, and xinfo for systems with X-Windows.

(See Info �le `info', node `Top', for more information.)

L

a

T

E

Xinfo creates both on-line help and a printed manual; moreover, it is freely redis-

tributable.

1.1 Advantages of LaTeXinfo over TeXinfo

Documentation for GNU utilities and libraries is usually written in a format called T

E

Xinfo.

This document describes an enhancement of this format which can be used with L

a

T

E

X instead

of T

E

X.

L

a

T

E

Xinfo o�ers a number of advantages over T

E

Xinfo:

1. The point size or layout style of a document can be changed easily, using the

documentstyle (article, report, book, twoside, . . .).

2. L

a

T

E

X has better error checking than T

E

X �les, especially in begin/end environments.

In addition, the L

a

T

E

X error messages are more informative. This makes it considerably

easier to make extensions and enhancements (read hacks).

3. L

a

T

E

X delimits its arguments with braces, so it's easier to tell where a L

a

T

E

Xinfo command

starts, and where it ends. TeXinfo has to stand on its head to avoid using TeX's braces.

4. Any L

a

T

E

X commands not understood by the on-line manual generator

(`latexinfo.el') are simply ignored. This means that you are free to add a considerable

number of L

a

T

E

X commands to make you manual look pretty, as long as you don't care

that there will be no action taken by the Info formatting program.

5. It is easy to add your own extensions to the on-line manual generator by making GNU

Emacs handlers for your L

a

T

E

X extensions. This is the Emacs counterpart to the

documentstyle options. L

a

T

E

Xinfo looks in a speci�ed directory for GNU Elisp code

that corresponds to each style �le. This makes it easy to modularize your style �les.

6. L

a

T

E

X has many advantages over T

E

X, such as being able to easily incorporate the BibT

E

X

bibliography formatting program.

1.2. INFO FILES 5

1.2 Info �les

A L

a

T

E

Xinfo �le can be transformed into a printed manual and an on-line Info �le.

An on-line Info �le is a �le formatted so that the Info documentation reading program

can operate on it. Info �les are divided into pieces called nodes, each of which contains the

discussion of one topic. Each node has a name, and contains both text for the user to read

and pointers to other nodes, which are identi�ed by their names. The Info program displays

one node at a time, and provides commands with which the user can move to the other related

nodes. See Info �le `info', node `Top', for more information about using Info.

Each node of an Info �le may have any number of child nodes that describe subtopics of

the node's topic. The names of these child nodes, if any, are listed in a menu within the

parent node; this allows you to use certain Info commands to move to one of the child nodes.

Generally, a L

a

T

E

Xinfo �le is organized like a book. If a node is at the logical level of a chapter,

its child nodes are at the level of sections; likewise, the child nodes of sections are at the level

of subsections.

All the children of any one parent are linked together in a bidirectional chain of `Next'

and `Previous' pointers. This means that all the nodes that are at the level of sections within

a chapter are linked together. Normally the order in this chain is the same as the order of

the children in the parent's menu. Each child node records the parent node name, as its `Up'

pointer. The last child has no `Next' pointer, and the �rst child has the parent both as its

`Previous' and as its `Up' pointer.

2

The book-like structuring of an Info �le into nodes that correspond to chapters, sections,

and the like is a matter of convention, not a requirement. The `Up', `Previous', and `Next'

pointers of a node can point to any other nodes, and a menu can contain any other nodes.

Thus, the node structure can be any directed graph. But it is usually more comprehensible

to follow a structure that corresponds to the structure of chapters and sections in a printed

manual.

In addition to `Next', `Previous', and `Up' pointers and menus, Info provides cross{

references, that can be sprinkled throughout the text. This is usually the best way to represent

links that do not �t a hierarchical structure. Usually, you will design a document so that its

nodes match the structure of chapters and sections in the printed manual. But there are times

when this is not right for the material being discussed. Therefore, L

a

T

E

Xinfo uses separate

commands to specify the node structure of the Info �le and the section structure of the printed

manual.

Generally, you enter an Info �le through a node that by convention is called `Top'. This node

normally contains just a brief summary of the �le's purpose, and a large menu through which

the rest of the �le is reached. From this node, you can either traverse the �le systematically by

going from node to node, or you can go to a speci�c node listed in the main menu, or you can

search the index menus and then go directly to the node that has the information you want.

2

In some documents, the �rst child has no `Previous' pointer. Occasionally, the last child has the node name

of the next following higher level node as its `Next' pointer.

6 CHAPTER 1. OVERVIEW OF LATEXINFO

1.3 Printed Manuals

A L

a

T

E

Xinfo �le can be formatted and typeset as a printed manual. To do this, you need to use

L

a

T

E

X, a powerful, sophisticated typesetting program written by Leslie Lamport, based on the

T

E

X typesetting system written by by Donald Knuth. A L

a

T

E

Xinfo-based printed manual will

be similar to any other book; it will have a title page, copyright page, table of contents, and

preface, as well as chapters, numbered or unnumbered sections and subsections, page headers,

cross references, footnotes, and indices.

You can use L

a

T

E

Xinfo to write a book without ever having the intention of converting it

into on-line information. You can use L

a

T

E

Xinfo for writing a printed novel, and even to write

a printed memo.

L

a

T

E

X is a general purpose typesetting program. L

a

T

E

Xinfo provides a �le called

`latexinfo.sty' that contains information (de�nitions or macros) that L

a

T

E

X uses when it

typesets a L

a

T

E

Xinfo �le. (The macros tell L

a

T

E

X how to convert the L

a

T

E

Xinfo \-commands

to L

a

T

E

X commands, which L

a

T

E

X can then process to create the typeset document.) L

a

T

E

X

allows you to customize the design of your document by selecting di�erent document styles and

options. You can readily change the style in which the printed document is formatted; for ex-

ample, you can change the sizes and fonts used, the amount of indentation for each paragraph,

the degree to which words are hyphenated, and the like. By changing the speci�cations, you

can make a book look digni�ed, old and serious, or light-hearted, young and cheery. See the

L

a

T

E

X Manual for more details [Lam86].

L

a

T

E

X is freely distributable. It is written in a dialect of Pascal called WEB and can

be compiled either in Pascal or (by using a conversion program that comes with the L

a

T

E

X

distribution) in C. (See Info �le `emacs', node `TeX Mode', for information about L

a

T

E

X.)

L

a

T

E

X is very powerful and has a great many features. Because a L

a

T

E

Xinfo �le must be

able to present information both on a character-only terminal in Info form and in a typeset

book, the formatting commands that L

a

T

E

Xinfo supports are necessarily limited. However, you

are free to use any L

a

T

E

X extensions as long as you don't mind them being ignored by the Info

formatting program. Or you can write your own extensions to the Info formatting program.

See section 18 [Extending LaTeXinfo], page 153.

1.4 \-commands

In a L

a

T

E

Xinfo �le, the commands that tell L

a

T

E

X how to typeset the printed manual and

tell latexinfo-format-buffer how to create an Info �le are preceded by `\'; they are called

\-commands. For example, \node is the command to indicate a node and \chapter is the

command to indicate the start of a chapter.

Remark: Most of the \-commands, with a few exceptions such as \LaTeX{}, must be written entirely

in lower case.

The L

a

T

E

Xinfo \-commands are a limited subset of L

a

T

E

X commands. The limits make it

possible for L

a

T

E

Xinfo �les to be understood both by L

a

T

E

X and by the code that converts them

1.4. \-COMMANDS 7

into Info �les. This is because you have to be able to display Info �les on any terminal that

displays alphabetic and numeric characters.

Because L

a

T

E

Xinfo is an extension of L

a

T

E

X, it is assumed in this manual that you are

familiar with L

a

T

E

X. There is a good reference manual available by the author [Lam86], and

there are several beginner's introduction manuals alos available. You should read these �rst

before trying to use L

a

T

E

Xinfo.

Unlike L

a

T

E

X, all ASCII printing characters except `\', `{' and `}' can appear in body text

in a L

a

T

E

Xinfo �le and stand for themselves. This means that the characters # $ % ^ & _ |

all print as normal characters. This is for several reasons. Firstly, L

a

T

E

Xinfo is designed for

documenting computer programs, where these characters are used quite often. Secondly, the

special uses in L

a

T

E

X of some of these characters, such as math mode, are not used in L

a

T

E

Xinfo,

so there is little point in making then special. And �nally, because there is only one character

in L

a

T

E

Xinfo that starts a command (\), it is easier to implement the Info formating program,

without making a complete implementation of L

a

T

E

X.

See section 5.8.1 [Using Ordinary LaTeX Commands], page 58, for how to make L

a

T

E

Xinfo

treat these characters as L

a

T

E

X does.

8 CHAPTER 1. OVERVIEW OF LATEXINFO

1.5 A Short Sample LaTeXinfo File

A L

a

T

E

Xinfo �le looks like the following, which is a complete but very short L

a

T

E

Xinfo �le. The

\comment or \c command introduces comments that will not appear in either the Info �le or

the printed manual; they are for the person who reads the L

a

T

E

Xinfo �le.

The �rst part of the �le, from `\documentstyle' through to `\setfilename', looks more

intimidating than it is. Most of the material is standard boilerplate; when you write a manual,

you just put in the name of your own manual in this section.

All the commands that tell L

a

T

E

X how to typeset the printed manual and tell

latexinfo-format-buffer how to create an Info �le are preceded by `\'; thus, \node indicates

a node and \chapter indicates the start of a chapter.

\documentstyle[11pt,latexinfo]{book}

\begin{document}

\c Declare which indices you want to make use of.

\newindex{cp}

\c Declare the bibliography style you want for BibTeX.

\bibliographystyle{alpha}

\c No ugly overfull black boxes.

\finalout

\c \refill automatically.

\alwaysrefill

\c Anything before the \setfilename will not appear in the Info file.

\setfilename{plisp.info}

\c Start the stuff for the titlepage.

\title{The PLisp Manual}

\author{Fred Foobar,\\

Clarke Institute,\\

999 Queen Street,\\

Toronto, Ontario}

\date{\today}

\maketitle

\c The following commands start the copyright page for the printed manual.

\clearpage

\vspace*{0pt plus 1filll}

1.5. A SHORT SAMPLE LATEXINFO FILE 9

Copyright \copyright{} year copyright-owner

Permission is granted to copy and distribute modified versions of this

document under the conditions for verbatim copying, provided that the entire

resulting derived work is distributed under the terms of a permission

notice identical to this one.

\c End the Copyleft page and don't use headings on this page.

\pagestyle{empty}

\clearpage

\pagestyle{headings}

\c Use roman numerals for the page numbers and Insert the Table of Contents.

\pagenumbering{roman}

\tableofcontents

\c End the Table of Contents

\clearpage

\c Make a list of tables if you have any

\listoftables

\clearpage

\c The Top node contains the master menu for the Info file.

\c This appears only in the Info file, not the printed manual.

\node Top, First Chapter, (dir), (dir)

\c A preface or overview to give the structure of the document.

\chapter*{Preface}

\clearpage

\c Start numbering from 1 with Arabic numbers

\pagenumbering{arabic}

\begin{menu}

* First Chapter:: The first chapter is the

only chapter in this sample.

\end{menu}

\node First Chapter, Concept Index, Top, Top

\chapter{First Chapter}

\cindex{Reference to First Chapter}

10 CHAPTER 1. OVERVIEW OF LATEXINFO

This is the contents of the first chapter.

Here is a numbered list.

\begin{enumerate}

\item

This is the first item.

\item

This is the second item.

\end{enumerate}

The \kbd{M-x latexinfo-format-buffer} command transforms a LaTeXinfo file

like this into an Info file; and \LaTeX\ typesets it for a printed manual.

\bibliography{plisp.bib}

\twocolumn

\node Concept Index, Top, First Chapter, Top

\unnumbered{Concept Index}

\printindex{cp}

\end{document}

1.6. THE STRUCTURE OF THIS MANUAL 11

Here is what the contents of the �rst chapter of the sample look like:

This is the contents of the �rst chapter.

Here is a numbered list.

1. This is the �rst item.

2. This is the second item.

The M-x latexinfo-format-buffer command in Emacs transforms a L

a

T

E

Xinfo

�le like this into an Info �le; and L

a

T

E

X typesets it for a printed manual.

1.6 The Structure of this Manual

This manual is structured in four parts:

LaTeX This introduces the L

a

T

E

X commands that are supported by L

a

T

E

Xinfo. This includes

topic such as chapter structuring, marking words and phrases, displayed material, making

lists tables and descriptions, formatting paragraphs, citations and footnotes.

Info This introduces the concept of the \node, and the speci�c requirements of the Info format-

ting program. This includes nodes and menus, making cross references, creating indices,

and creating and installing an info �le.

Emacs This part show how to run L

a

T

E

X and Info to generate the printed and on{line versions

of the manual. It also describes how Emacs can make your life easier when writing

L

a

T

E

Xinfo programs.

Appendices The appendices describe how to install L

a

T

E

Xinfo, how to convert �les from other

formats to L

a

T

E

Xinfo, and gives a summary of all of the commands.

12 CHAPTER 1. OVERVIEW OF LATEXINFO

Part I

LaTeX

13

Chapter 2

Beginning a LaTeXinfo File

2.1 General Syntactic Conventions

All ascii printing characters except `\', `{' and `}' can appear in a L

a

T

E

Xinfo �le and stand for

themselves. `\' is the escape character which introduces commands. `{' and `}' should be used

only to surround arguments to certain commands. To put one of these special characters into

the document, put an `\' character in front of it, like this: `\back', `\{', and `\}'.

It is customary in L

a

T

E

X to use doubled single-quote characters to begin and end quotations:

`` and '. This convention should be followed in L

a

T

E

Xinfo �les. L

a

T

E

X converts doubled single-

quote characters to left- and right-hand doubled quotation marks, \like this," and Info converts

doubled single-quote characters to ascii double-quotes: `` and '' to `"'. See section 4.3.6

[Inserting Characters Verbatim], page 46 for how to protect sections of documentation from

these global substitutions.

Use three hyphens in a row, `---', for a dash|like this. In L

a

T

E

X, a single or even a double

hyphen produces a printed dash that is shorter than you want. Info reduces three hyphens to

two for display on the screen.

L

a

T

E

X ignores the line-breaks in the input text, except for blank lines, which separate

paragraphs. Info generally preserves the line breaks that are present in the input �le. Therefore,

break the lines in the L

a

T

E

Xinfo �le the way you want them to appear in the output Info �le, and

let L

a

T

E

X take care of itself. Since Info does not normally re�ll paragraphs when it processes

them, a line with commands in it will sometimes look bad after Info has run on it. To cause Info

to re�ll the paragraph after �nishing with the other processing, you need to put the command

\refill at the end of the paragraph. (See section 7.4 [Re�lling Paragraphs], page 68.)

If you mark o� a region of the L

a

T

E

Xinfo �le with the \begin{iftex} and \end{iftex}

commands, that region will appear only in the printed copy; in that region, you can use

commands borrowed from L

a

T

E

X that you cannot use in Info. Likewise, if you mark o� a region

with the \begin{ifinfo} and \end{ifinfo} commands, that region will appear only in the

Info �le; in that region, you can use Info commands that you cannot use in L

a

T

E

X. (See section

5.8 [Conditionals], page 57.)

Caution: Do not use tabs in examples in a L

a

T

E

Xinfo �le! L

a

T

E

X treats them like

15

16 CHAPTER 2. BEGINNING A LATEXINFO FILE

single spaces.

1

2.1.1 Comments

You can write comments in a L

a

T

E

Xinfo �le that will not appear in either the Info �le or the

printed manual by using the \comment command (which may be abbreviated to \c). Such

comments are for the person who reads the L

a

T

E

Xinfo �le. All the text on a line that follows

either \comment or \c is a comment; the rest of the line does not appear in either the Info �le

or the printed manual. (The \comment or \c does not have to be at the beginning of the line;

only the text on the line that follows after the \comment or \c command does not appear.)

You can write long stretches of text that will not appear in either the Info �le or the

printed manual by using the \begin{ignore} and \end{ignore} commands. Write each of

these commands on a line of its own, starting each command at the beginning of the line.

Text between these two commands does not appear in the processed output. You can use

\begin{ignore} and \end{ignore} for writing comments or for holding text you may wish

to use in another version of your document. Often, \begin{ignore} and \end{ignore} is

used to enclose a part of the copying permissions that applies to the L

a

T

E

Xinfo source �le of a

document, but not to the Info or printed version of the document.

2.2 What a LaTeXinfo File Must Have

In order to be made into a printed manual, a L

a

T

E

Xinfo �le must begin with lines that looks

like

\documentstyle[12pt,latexinfo]{book}

\pagestyle{headings}

\begin{document}

\setfilename{latexinfo.info}

The `\documentstyle[12pt,latexinfo]{book}' line tells L

a

T

E

X to use the

`latexinfo.sty' style and `book.sty' documentstyle �les. The \pagestyle{headings} com-

mand is the L

a

T

E

X command to put the chapter and section headings and page numbers at

the top of each page. The \begin{document} command starts the document, and makes the

characters # $ % ^ & _ | all begin to print as normal characters. (These characters retain their

normal L

a

T

E

X meanings in the preamble between the \documentstyle and \begin{document}

commands.) This line must be followed (sooner or later) by the `\setfilename{info-�le-

name}'. It is needed to provide a name for the Info �le to output to. The \setfilename

command must occur at the beginning of a line. The

1

To avoid putting tabs into your �le, you can set the indent-tabs-mode variable in Emacs to nil so that

Emacs inserts multiple spaces when you press the TAB key. Also, you can run untabify to convert tabs in a

region to multiple spaces.

2.3. SIX PARTS OF A LATEXINFO FILE 17

\end{document}

line at the end of the �le on a line of its own tells L

a

T

E

X that the �le is ended and to stop

typesetting.

Usually, you won't use quite such a spare format, but will include mode setting and index

declarations at the beginning of a L

a

T

E

Xinfo �le, like this:

\documentstyle[12pt,latexinfo]{book}

\pagestyle{headings}

\begin{document}

\newindex{cp}

\bibliographystyle{alpha}

\finalout

\alwaysrefill

\setfilename{latexinfo.info}

Furthermore, you will usually provide a L

a

T

E

Xinfo �le with a title page, master menu, and

the like. But the minimum, which can be useful for short documents, is just the three lines at

the beginning and the one line at the end.

2.3 Six Parts of a LaTeXinfo File

Various pieces of information have to be provided to L

a

T

E

Xinfo at the beginning of a L

a

T

E

Xinfo

�le, such as the name of the �le, the title of the document and the like. If you want to get

elaborate, the beginning of a L

a

T

E

Xinfo �le has six parts:

1. The preamble, which includes the command to tell L

a

T

E

X what style �les to use when

processing the �le. This starts with the \documentstyle, and is terminated by the

\begin{document} command.

2. The header, which is terminated by the \setfilename command that contains the

L

a

T

E

Xinfo options needed to tailor your output to your needs.

3. The title page and the copyright page, which usually are set without any page numbers

(\pagestyle{empty). This is terminated by the \maketitle command.

4. Then the table of contents, list of �gures and tables, and possibly a pref-

ace, which are usually set with roman page numbers (\pagestyle{headings} and

\pagenumbering{roman).

5. The `Top' node that contains an extensive menu for the whole Info �le. This is written

with the \node command, with a nodename of Top. The contents of this node should

only appear in the Info �le.

18 CHAPTER 2. BEGINNING A LATEXINFO FILE

6. The beginning of the text, which is set with \pagenumbering{arabic), and a chapter or

section command.

For a a short sample latexinfo �le, see the �le `lnfo-sample.tex' which is supplied with

the L

a

T

E

Xinfo distribution.

2.4 The LaTeXinfo File Header

L

a

T

E

Xinfo �les start with at least three lines that provide Info and L

a

T

E

X with necessary infor-

mation.

\documentstyle[12pt,latexinfo]{book}

\begin{document}

\setfilename{foo.info}

2.4.1 The Documentstyle

Every L

a

T

E

Xinfo �le that is to be the top-level input to L

a

T

E

X must begin with a line that looks

like this:

\documentstyle[12pt,latexinfo]{book}

When the �le is processed by L

a

T

E

X, it loads the macros listed as options to the

documentstyle command. The option latexinfo is needed for processing a L

a

T

E

Xinfo �le,

and L

a

T

E

X will then input the �le `latexinfo.sty'; see section 16.5 [Preparing for LaTeX],

page 143.

Unlike T

E

Xinfo, you can also include other options that may also include style �les. These

L

a

T

E

Xinfo style �les may have an Emacs counterpart, so that you can extend L

a

T

E

Xinfo by

writing your own styles. See section 18 [Extending LaTeXinfo], page 153, for more information

on writing your own styles. Also look in the inputs directory of your T

E

X distribution for other

L

a

T

E

X styles that are provided with T

E

X.

Remark: The region of the �le between the \documentstyle and the \begin{document} commands

is know in L

a

T

E

X as the preamble. Only certain L

a

T

E

X commands are allowed there, and you'll need

to consult the L

a

T

E

X manual for the list of allowed commands. It is best to put your commands that

modify your L

a

T

E

X commands in the region between the \begin{document} and the \setfilename;

they will be ignored by Info, and L

a

T

E

X will not object.

2.4.2 \setfilename

It is important to note that the \setfilename command is required for Info. In order to be

made into an Info �le, a L

a

T

E

Xinfo �le must contain a line that looks like this:

\setfilename{info-�le-name}

2.4. THE LATEXINFO FILE HEADER 19

Write the \setfilename command at the beginning of a line followed by the Info �le name.

The \setfilename line speci�es the name of the Info �le to be generated. Specify the name

with an `.info' extension, to produce an Info �le name such as `latexinfo.info'.

Any text that appears before the \setfilename command is not included in the Info �le.

So if you want to include the title and author material, place the \setfilename command

before them; if not, after them.

This region, between the \begin{document} command and the \setfilename command

is known as the header, and should contain any of the commands that alter the overall style of

your document.

2.4.3 New Indexes

In order to generate any of the indices, you must declare them with the \newindex com-

mand, before it is �rst used by one of the index commands. This is usually done after the

\begin{document} but before the \setfilename.

newindex takes one argument, which is the two letter index type. For example, to declare

a concept and function index, you would use

\documentstyle[12pt,latexinfo]{book}

\begin{document}

\newindex{cp}

\newindex{fn}

\setfilename{plisp.info}

See section 13.2.1 [Declaring indices], page 115, for the declaring indices and the de�nitions

of the index types.

2.4.4 Customizing Your Layout

You may, if you wish, create your own, customized headings and footings. The \markboth

and \markright commands are both supported in L

a

T

E

Xinfo. These should occur on a line by

themselves. See [Lam86, x 5.1], for a detailed discussion of this process.

The \oddfoot and \evenfoot commands speci�y the odd and even page footings respec-

tively. These should occur on a line by themselves.

At the beginning of a manual or book, pages are not numbered|for example, the title and

copyright pages of a book are not numbered. To accomplish this, use the command

\pagestyle{empty}

as shown in the sample �le, `lnfo-sample.tex'.

By convention, table of contents pages are numbered with roman numerals and not in

sequence with the rest of the document. To accomplish this, use the commands

20 CHAPTER 2. BEGINNING A LATEXINFO FILE

\pagestyle{headings}

\pagenumbering{roman}

as shown in the sample �le, `lnfo-sample.tex'.

Since an Info �le does not have pages, the \markboth, \markright, pagestyle and

pagenumbering commands have no e�ect on it. The lines containing these commands will

be deleted from the Info �le.

The \footnotestyle command to specify an Info �le's footnote style. See section 8.1

[Footnotes], page 71 for how to use this command.

2.4.4.1 Paragraph Indenting

The Info formatting commands may insert spaces at the beginning of the �rst line of each

paragraph, thereby indenting that paragraph. The \paragraphindent command speci�es the

indentation. Write \paragraphindent at the beginning of a line followed by either `asis' or a

number in braces. The template is:

\paragraphindent{indent}

The Info formatting commands indent according to the value of indent:

� If the value of indent is `asis', the Info formatting commands do not change the existing

indentation.

� If the value of indent is 0, the Info formatting commands delete existing indentation.

� If the value of indent is greater than 0, the Info formatting commands indent the para-

graph by that number of spaces.

The default value of indent is `asis'.

Write the \paragraphindent command before the setfilename command at the beginning

of a L

a

T

E

Xinfo �le.

The latexinfo-format-buffer and latexinfo-format-region commands do not auto-

matically indent paragraphs. These commands only indent paragraphs that are ended by an

\refill command. (See section 7.5 [Always Re�lling Paragraphs], page 69, for how to avoid

this.) See section 7.4 [Re�lling Paragraphs], page 68, for more information about \refill.

2.5 The Title and Copyright Pages

2.5.1 Titlepage

The �rst printed material after the \begin{document} will make up the titlepage. The L

a

T

E

X

commands \title, \author and \date are used the same way as in any L

a

T

E

X report or book.

The title page is terminated by \maketitle. Following the material for the title page should

be the copyright page.

2.5. THE TITLE AND COPYRIGHT PAGES 21

\title{The PLisp Manual}

\author{Fred Foobar,\\

Clarke Institute}

\date{\today}

\maketitle

The \title command produces a line in which the title is set centered on the page in a

larger than normal font. You can have many lines in the title by using \\ to force a newline.

The \author command sets the names of the author or authors in a middle-sized font,

centered on the page.

The \date command sets the date in a middle-sized font, centered on the page. You can

put the date in yourself, or use the \today command, which will put in the date that the

document is processed on.

The \maketitle command sets the author, title and date, and in the book documentstyle,

emitts a new page. The should be no other printing text between the documentstyle command

and the maketitle command.

In a book style, text is printed on both sides of the paper, chapters start on right-hand

pages, and right-hand pages have odd numbers. But in a report style, text is printed only

on one side of the paper unless the twoside L

a

T

E

X option is provided to the documentstyle

command.

2.5.2 The Copyright Page and Printed Permissions

This part of the beginning of a L

a

T

E

Xinfo �le contains the text of the copying permissions that

will appear in the manual. This is usually followed by the \tableofcontents command. If

you put title and copyright pages before the \setfilename command, then this material will

only appear only in the printed manual, not in the Info �le.

By international treaty, the copyright notice for a book should be either on the title page

or on the back of the title page. The copyright notice should include the year followed by the

name of the organization or person who owns the copyright.

The following commands start the copyright page for the printed manual.

\maketitle

\clearpage

\vspace*{0pt plus 1filll}

Copyright \copyright{} year copyright-owner

Permission is granted to copy and distribute modified versions of this

document under the conditions for verbatim copying, provided that the entire

resulting derived work is distributed under the terms of a permission

notice identical to this one.

22 CHAPTER 2. BEGINNING A LATEXINFO FILE

\pagestyle{empty}

\clearpage

When the copyright notice is on the back of the title page, the page is not numbered.

Therefore, this is usually done while a \pagestyle{empty} is in e�ect. See the L

a

T

E

X Manual

for more details on the pagestyle command [Lam86].

To cause a page break, the \clearpage command is used. In the sample, the \clearpage

that ends the titlepage is followed by the somewhat mysterious line that reads: `\vspace*{0pt

plus 1filll}'. This is a line that uses L

a

T

E

X commands to push the copyright notice and the

other text on the copyright page towards the bottom of the page. The \vspace* command

means to put in white space. The `0pt plus 1filll' means to put in zero points of mandatory

white space, and as much optional white space as needed. Note the use of three `l's in the

word `filll'; this is the correct use in L

a

T

E

X.

The \copyright command generates a `c' inside a circle. The copyright notice itself has

the following legally de�ned sequence:

Copyright
c
 year copyright-owner

It is customary to put information on how to get a manual after the copyright notice (the

address of the Free Software Foundation, for example) and the permissions.

When you write a manual about a computer program, you should write the version of the

program to which the manual applies on the title page. If the manual changes more frequently

than the program or is independent of it, you should also include an edition number

2

for the

manual. This helps readers keep track of which manual is for which version of the program.

See section 2.8.1 [Sample Permissions], page 26, for recommended permission text.

2.6 Generating a Table of Contents

The commands \chapter, \section, etc., supply the information to make up a table of con-

tents, but they do not cause an actual table to be generated. To do this, you must use the

\tableofcontents command.

The table of contents command outputs (into a printed manual) a complete table of con-

tents, based on the \chapter, \section and other sectioning commands. This command

should be used on a line by itself. This command automatically generates a Table of Contents

heading at the top of the page. Tables of contents should be generated at the beginning of the

manual, usually just after the \maketitle command or copyright pages.

You can also use the \listoftables command to make a listing of all of the tables in the

document. See section 6.5 [Figures and Tables], page 63, for how to de�ne tables.

2

We have found that it is helpful to refer to versions of manuals as `editions' and versions of programs

as `versions'; otherwise, we �nd we are liable to confuse each other in conversation by referring to both the

documentation and the software with the same words.

2.7. THE TOP NODE AND MASTER MENU 23

\pagestyle{empty}

\clearpage

\pagestyle{headings}

\pagenumbering{roman}

\tableofcontents

\clearpage

\c Make a list of tables if you have any

\listoftables

\clearpage

Since an Info �le uses menus instead of tables of contents, the Info formatting commands

ignore the \tableofcontents and \listoftables commands.

2.7 The Top Node and Master Menu

The `Top' node is the node at which you enter the �le when browing the Info �le with one of

the Info browsing programs.

A `Top' node should contain a brief description of the �le and an extensive, master menu for

the whole Info �le. The contents of anything other than the master menu should appear only in

the Info �le; none of it should appear in printed output, so enclose it between \begin{ifinfo}

and \end{ifinfo} commands. L

a

T

E

X does not print either an \node line or a menu; they

appear only in Info, so you do not have to enclose these parts between \begin{ifinfo} and

\end{ifinfo}. See section Conditionals in Conditionally Visible Text.)

For example, the beginning of the Top node of a manual might like this:

. . .

\tableofcontents

\clearpage

\begin{ifinfo}

\node Top, Copying, (dir), (dir)

L

a

T

E

X info is a documentation system. . .

This is edition. . .

\end{ifinfo}

\begin{menu}

* Copying:: L

a

T

E

X info is freely redistributable.

* Overview:: What is LaTeXinfo?. . .

\end{menu}

24 CHAPTER 2. BEGINNING A LATEXINFO FILE

In a `Top' node, the `Previous', and `Up' nodes usually refer to the top level directory of the

whole Info system, which is called `(dir)'. See section 14.2 [Installing an Info File], page 121,

for more information about the dir Info �le in the `info' directory.

2.7.1 Parts of a Master Menu

A master menu is a detailed main menu listing all the nodes in a �le. A master menu is enclosed

in \begin{menu} and \end{menu} commands and does not appear in the printed document.

Generally, a master menu is divided into parts.

� The �rst part contains the major nodes in the L

a

T

E

Xinfo �le: the nodes for the chapters,

chapter-like sections, and the appendices.

� The second part contains nodes for the indices.

� The third and subsequent parts contain a listing of the other, lower level nodes, often

ordered by chapter. This way, rather than go through an intermediary menu, an inquirer

can go directly to a particular node when searching for speci�c information. These menu

items are not required; add them if you think they are a convenience.

Each section in the menu can be introduced by a descriptive line. So long as the line does

not begin with an asterisk, it will not be treated as a menu item. (See section 11.3 [Menu

Environment], page 96, for more information.)

For example, the master menu for a manual might look like the following:

2.8. SOFTWARE COPYING CONDITIONS 25

\begin{menu}

* Copying:: L

a

T

E

X info is freely

redistributable.

* Overview:: What is LaTeXinfo?

* LaTeXinfo Mode:: Special features in GNU Emacs.

. . .

. . .

* Command and Variable Index::

An item for each \-command.

* Concept Index:: An item for each concept.

--- The Detailed Node Listing ---

Overview of LaTeXinfo

* Info Files:: What is an Info file?

* Printed Manuals:: Characteristics of

a printed manual.

. . .

. . .

Using L

a

T

E

X info Mode

* Info on a Region:: Formatting part of a file

for Info.

. . .

. . .

\end{menu}

2.8 Software Copying Conditions

If the L

a

T

E

Xinfo �le has a section containing the distribution information and a warranty

disclaimer for the software that is being documented, this section usually follows the `Top'

node. The General Public License is very important to Project GNU software. It ensures that

you and others will continue to have a right to use and share the software.

The copying and distribution information and the disclaimer are usually followed by a

preface, or else by the �rst chapter of the manual.

Although a preface is not a required part of a L

a

T

E

Xinfo �le, it is very helpful. Ideally, it

should state clearly and concisely what the �le is about and who would be interested in reading

it. In general, the preface would follow the licensing and distribution information, although

sometimes people put it earlier in the document. Usually, a preface is put in an \chapter*

26 CHAPTER 2. BEGINNING A LATEXINFO FILE

type of section. (See section 3.3 [Chapter], page 33.)

2.8.1 Sample Permissions

L

a

T

E

Xinfo �les should contain sections that tell the readers that they have the right to copy and

distribute the Info �le, the printed manual, and any accompanying software. Here are samples

containing the standard text of the Free Software Foundation copying permission notice for an

Info �le and printed manual.

See Info �le `emacs', node `Distrib', for an example of the text that could be used in the

software Distribution, General Public License, and NO WARRANTY sections of a document.

2.8.2 Titlepage Copying Permissions

In the copyright section of the L

a

T

E

Xinfo �le, the standard Free Software Foundation copy-

ing permission notice follows the copyright notice and publishing information. The standard

phrasing is:

Permission is granted to make and distribute verbatim

copies of this manual provided the copyright notice and

this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this manual under the conditions for

verbatim copying, provided also that the sections

entitled ``Distribution'' and ``General Public License''

are included exactly as in the original, and provided

that the entire resulting derived work is distributed

under the terms of a permission notice identical to this

one.

Permission is granted to copy and distribute

translations of this manual into another language, under

the above conditions for modified versions, except that

the sections entitled ``Distribution'' and ``General

Public License'' may be included in a translation

approved by the author instead of in the original

English.

2.9 Ending a LaTeXinfo File

The end of a L

a

T

E

Xinfo �le should include the commands that create the bibliography, and the

indices. It must include the \end{document} command that marks the last line that L

a

T

E

X

processes. For example, a L

a

T

E

Xinfo �le might be ended as follows:

2.9. ENDING A LATEXINFO FILE 27

For example,

\bibliography{latexinfo}

\twocolumn

\node Concept Index, , Previous Node, Top

\unnumbered{Concept Index}

\cindex{Concept Index}

\printindex{cp}

\end{document}

The \end{document} command should be on a line by itself and every L

a

T

E

Xinfo �le must

end with such a line. This command terminates L

a

T

E

X processing and forces out un�nished

pages.

2.9.1 Making a Bibliography

You may also choose to include a bibliography of citations in the document, using the \cite

command . Citations are prepared using the program BibT

E

X, which formats the citations for

use with L

a

T

E

X. See the L

a

T

E

X Manual for more details in BibT

E

X [Lam86, Appendix B].

Before you use the \cite command, you must declare the bibliography style that you are

going to use. This is usually done at the beginning of the document, for example

\begin{document}

\bibliographystyle{alpha}

At the end of the document comes the bibliography itself. The \bibliography takes as an

argument a comma separated list of �lenames that contain the bibliography entries.

\bibliography{latexinfo}

With these two sections in your document, you can use the \cite command to refer to the

bibliography. For example

a citation of the GNU Emacs Manual \cite{GNUEmacsManual}\dots

would produce

a citation of the GNU Emacs Manual [Sta86]. . .

and would cause an entry to be put in the Bibliography section something like

Sta86 Richard Stallman. The GNU Emacs Manual, The Free Software Foundation, 675 Mas-

sachusetts Ave., Cambridge MA, 02139, 1986.

See section 8.2 [Citations], page 72, for how to use citations in the document.

28 CHAPTER 2. BEGINNING A LATEXINFO FILE

2.9.2 Index Menus and Printing an Index

Using L

a

T

E

Xinfo, you can generate printed indices and Info �le menus without having to sort

and collate entries manually. L

a

T

E

Xinfo will do this for you automatically. Each index covers

a certain kind of entry (functions, or variables, or concepts, etc.) and lists all of those entries

in alphabetical order, together with information on how to �nd the discussion of each entry.

In a printed manual, this information consists of page numbers. In an Info �le, it consists of a

menu item leading to the �rst node where the entry is de�ned.

To print an index means to include it as part of a manual or Info �le. This does not happen

automatically just because you use \cindex or other index-entry generating commands in the

L

a

T

E

Xinfo �le; those just cause the raw data for the index to be accumulated. To generate an

index, you must include the \printindex command at the place in the document where you

want the index to appear, and declare the index at the beginning of the document with the

\newindex command. Also, as part of the process of creating a printed manual, you must run

a program called latexindex (see section 16 [Printing Hardcopy], page 139) to sort the raw

data to produce a sorted index �le. The sorted index �le is what will actually be used to print

the index.

Like typesetting, the construction of an index is a highly skilled, professional art, the

subtleties of which are not appreciated until you have to do it yourself. L

a

T

E

Xinfo o�ers six

di�erent types of prede�ned index: the concept index, the function index, etc. (See section 13

[Creating Indices], page 113.) Each index type has a two-letter name. You may merge indices,

or put them into separate sections (See section 13.3 [Combining Indices], page 116.).

The \printindex command does not generate a chapter heading for the index. Conse-

quently, you should precede the \printindex command with a suitable section or chapter

command (usually \unnumbered) to supply the chapter heading and put the index into the

table of contents. Precede the \unnumbered command with an \node line. Also, if you want

the index to be set in two-column mode, then you should precede the index with the L

a

T

E

X

\twocolumn command. You can switch back to one-column mode with the L

a

T

E

X \onecolumn

command. For example,

\twocolumn

\node Command Index, Concept Index, The Last Section, Top

\unnumbederd{Command Index}

\cindex{Command Index}

\printindex{fn}

\onecolumn

\node Concept Index,Top, Command Index, Top

\unnumbered{Concept Index}

\cindex{Concept Index}

\printindex{cp}

2.9. ENDING A LATEXINFO FILE 29

\end{document}

(Readers often prefer that the concept index come last in a book, since that makes it easiest

to �nd.)

2.9.3 \end{document} File Ending

An \end{document} command terminates L

a

T

E

X or Info formatting. None of the formatting

commands see any of the �le following \end{document}. The \end{document} command

should be on a line by itself.

Optionally, you may follow an \end{document} line with a local variables list. See section

Compile-Command in Using Local Variables and the Compile Command, for more information.

30 CHAPTER 2. BEGINNING A LATEXINFO FILE

Chapter 3

Chapter Structuring

The chapter structuring commands divide a document into a hierarchy of chapters, sections,

subsections, and subsubsections. These commands generate large headings; they also provide

information for the table of contents of a printed manual.

The chapter structuring commands do not create an Info node structure, so normally you

should put an \node command immediately before each chapter structuring command (see

section Nodes and Menus in Nodes and Menus). The only time you are likely to use the

chapter structuring commands without using the node structuring commands is if you are

writing a document that contains no cross references and will never be transformed into Info

format.

3.1 Tree Structure of Sections

A L

a

T

E

Xinfo �le is usually structured like a book with chapters, sections, subsections, and the

like. This structure can be visualized as a tree (or rather as an upside-down tree) with the root

at the top and the levels corresponding to chapters, sections, subsection, and subsubsections.

In Info format, `Next' and `Previous' pointers of a node usually lead to other nodes at the

same level; an `Up' pointer usually leads to a node at the level above; and a `Menu' leads to

nodes at a level below. Cross references can point to nodes at any level. See section 12 [Cross

References], page 101.

Here is a diagram that shows a L

a

T

E

Xinfo �le with three chapters, each of which has two

sections.

31

32 CHAPTER 3. CHAPTER STRUCTURING

top

|

| | |

Chapter 1 Chapter 2 Chapter 3

| | |

-------- -------- --------

| | | | | |

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2

In a L

a

T

E

Xinfo �le that has this structure, the beginning of Chapter 2 might look like this:

\node Chapter 2, Chapter 3, Chapter 1, top

\chapter{Chapter 2}

To get to Sections 2.1 and 2.2, you need a menu inside of Chapter 2 that says:

\begin{menu}

* Sect. 2.1:: Description of this section.

* Sect. 2.2::

\end{menu}

This menu is located inside Chapter 2, after the beginning of the chapter, just before Section

2.1.

Usually, a \node command and a chapter structuring command are used in sequence, along

with indexing commands. For example, the node for the chapter on Ending a LaTeXinfo File

looks like this:

\node Ending a LaTeXinfo File, Structuring, Beginning a LaTeXinfo File, Top

\chapter{Ending a LaTeXinfo File}

\cindex{Ending a LaTeXinfo File}

\cindex{LaTeXinfo file ending}

\cindex{File ending}

The \node command is the only one in L

a

T

E

Xinfo where the arguments are not delineated

by braces. The arguments are separated by commas, and are terminated at the end of the

line. This is because the Info format itself requires the node arguments to be like this. Note

that it also means that you cannot use a comma within any of the four arguments to the node

command.

The chapter structuring commands are described in the sections that follow; the \node

and \begin{menu} commands are described in a following chapter (see section 11 [Nodes and

Menus], page 93).

3.2. TYPES OF STRUCTURING COMMAND 33

3.2 Types of Structuring Command

There are four chapter-structuring commands for chapters, sections, subsections and subsub-

sections. The optional heading argument of L

a

T

E

X to these commands is not supported. You

should avoid the use of any L

a

T

E

X commands in the headings: any such commands should be

preceded by a \protect. See the L

a

T

E

X Manual for more details [Lam86].

3.3 Chapter

\chapter identi�es a chapter in the document. It is followed by a single argument:

\chapter{Node and Chapter Structuring}

In L

a

T

E

X, it creates a chapter in the document, specifying the chapter title. The chapter

will be numbered automatically in the printed manual. In the Info �le, \chapter causes its

argument to appear on a line by itself, with a line of asterisks inserted underneath. For example:

This is a Chapter

To start a chapter without it being numbered, use the \unnumbered command. To start a

chapter without it being numbered or appearing in the table of contents, use the \chapter*

command.

In the printed manual, the chapters will begin on a new page. If you want the chapters to

appear on the odd{sided pages, use the book documentstyle.

3.4 Appendix

\appendix is the same as the L

a

T

E

X command of the same name. In a printed manual, all

chapters that follow this command are numbered di�erently in the table of contents: they are

given a letter instead of a number, and the letters restart from A.

3.5 Section

\section is like \chapter except that in L

a

T

E

X it makes a section rather than a chapter. (See

section 3.3 [Chapter], page 33.) Sections go within chapters. In the Info �le, \chapter and

\section di�er only in that \section underlines with `='. For example,

This is a section

=================

To start a section without it being numbered, use the \unnumberedsec command. To start

a section without it being numbered or appearing in the table of contents, use the \section*

command.

34 CHAPTER 3. CHAPTER STRUCTURING

3.6 Subsection

Subsections are to sections as sections are to chapters. (See section 3.5 [Section], page 33.)

They are underlined with `-'. For example,

This is a subsection

To start a subsection without it being numbered, use the \unnumberedsubsec command.

To start a subsection without it being numbered or appearing in the table of contents, use the

\subsection* command.

3.7 Subsubsection

Subsubsections are to subsections as subsections are to sections. (See section 3.6 [Subsection],

page 34.) They are underlined with periods. For example,

This is a subsubsection

.......................

To start a subsubsection without it being numbered, use the \unnumberedsubsubsec com-

mand. To start a subsubsection without it being numbered or appearing in the table of contents,

use the \subsubsection* command.

Chapter 4

Marking Words and Phrases

In L

a

T

E

Xinfo, you can mark words and phrases in a variety of ways. These ways specify, for

example, whether a word or phrase is a de�ning occurrence, a metasyntactic variable, or a

symbol used in a program. Also, you can use fonts to emphasize text.

In addition, there are special commands for inserting single characters that have special

meaning in L

a

T

E

Xinfo, such as braces, and for inserting symbols with special handling, such as

dots and bullets. Finally, there are ways to emphasize words.

4.1 Indicating De�nitions, Commands, etc.

L

a

T

E

Xinfo has commands for indicating just what kind of object a piece of text refers to.

Metasyntactic variables, for example, are marked by \var and code by \code. L

a

T

E

Xinfo uses

this information to determine how to highlight the text. Since the pieces of text are labelled

by commands that tell what kind of object they are, it is easy to change the way L

a

T

E

Xinfo

formats such text.

For example, code is usually illustrated in a typewriter font, but it would be easy to change

the way L

a

T

E

Xinfo highlights code to use another font. This change would not e�ect how

keystroke examples are highlighted. If straight typesetting commands were used in the body

of the �le and you wanted to make a change, you would have to check every single occurrence

to make sure that you were changing code and not something else that should not be changed.

The highlighting commands can be used to generate useful information from the �le, such as

lists of functions or �le names. It is possible, for example, to write a L

a

T

E

Xinfo style to insert

an index entry after every paragraph that contains words or phrases marked by a speci�ed

command. You could do this to construct an index of functions automatically; see section

18.1.1 [The fvpindex Style], page 153 for an example.

35

36 CHAPTER 4. MARKING WORDS AND PHRASES

The font changing commands commands serve a variety of purposes:

\code{sample-code} Indicate text that is a literal example of a piece of a program.

\kbd{keyboard-characters} Indicate keyboard input.

\key{key-name} Use for the conventional name for a key on a keyboard.

\samp{text} Indicate text that is a literal example of a sequence of characters.

\var{metasyntactic-variable} Indicate a metasyntactic variable.

\�le{�le-name} Indicate the name of a �le.

\dfn{term} Use for the introductory or de�ning use of a term.

\ctrl{ctrl-char} Use for an ascii control character.

4.1.1 \code{sample-code}

Use the \code command to indicate text that is a piece of a program and which consists of

entire syntactic tokens. Enclose the text in braces.

Thus, you should use \code for an expression in a program, for the name of a variable or

function used in a program, or for a keyword. Also, you should use \code for the name of a

program, such as diff, that is a name used in the machine. (You should write the name of a

program in the ordinary text font if you regard it as a new English word, such as `Emacs' or

`Bison'.)

Use \code for the TEXINPUTS environment variable and other such variables.

Do not use the \code command for a string of characters shorter than a syntactic token.

In particular, you should not use the \code command when writing about the characters used

in a token; do not, for example, use \code when you are explaining what letters or printable

symbols can be used in the names of functions. (Use \samp.) Also, you should not use \code

to mark text that is considered input to programs unless the input is written in a language

that is like a programming language. For example, you should not use \code for the single

character commands of GNU Emacs (use \kbd instead) although you may use \code for the

names of the Emacs Lisp functions that the keyboard commands invoke.

In the printed manual, \code causes L

a

T

E

X to typeset the argument in a typewriter face.

In the Info �le, it causes the Info formatting commands to use `. . .' quotation. For example:

Use \code{diff} to compare two files.

produces this in the printed manual:

Use diff to compare two �les.

and this in Info �le:

Use `diff' to compare two files.

4.1. INDICATING DEFINITIONS, COMMANDS, ETC. 37

4.1.2 \kbd{keyboard-characters}

Use the \kbd command for characters of input to be typed by users. For example, to refer to

the characters M-a, write

\kbd{M-a}

and to refer to the characters M-x shell, write

\kbd{M-x shell}

The \kbd command has the same e�ect as \code in Info, but may produce a di�erent font

in a printed manual.

You can embed another \-command inside the braces of an \kbd command. Here, for

example, is the way to describe a command that would be described more verbosely as \press

an `r' and then press the RET key":

\kbd{r \key{RET}}

This produces: r RET

You also use the \kbd command if you are spelling out the letters you type; for example:

To give the \code{logout} command,

type the characters \kbd{l o g o u t \key{RET}}.

This produces

To give the logout command, type the characters l o g o u t RET.

(Also, this example shows that you can add spaces for clarity. If you really want to mention

a space character as one of the characters of input, write \key{SPC} for it.)

4.1.3 \key{key-name}

Use the \key command for the conventional name for a key on a keyboard, as in

\key{RET}

You can use the \key command within the argument of an \kbd command when the se-

quence of characters to be typed includes one or more keys that are described by name.

For example, to produce C-x ESC you would type:

\kbd{C-x \key{ESC}}

The recommended names to use for keys are in upper case and are

38 CHAPTER 4. MARKING WORDS AND PHRASES

SPC Space

RET Return

LFD Linefeed

TAB Tab

BS Backspace

ESC Escape

DEL Delete

SFT Shift

CTL Control

META Meta

There are subtleties to handling words like `meta' or `ctl' that are names of shift keys. When

mentioning a character in which the shift key is used, such as Meta-a, use the \kbd command

alone without the \key command, but when you are referring to the shift key in isolation, use

the \key command. For example, write `\kbd{Meta-a}' to produce Meta-a and `\key{META}'

to produce META. This is because Meta-a refers to keys that you press on a keyboard, but META

refers to a key without implying that you press it.

4.1.4 Ctrl

\ctrl is used to describe an ASCII control character. The pattern of usage is \ctrl{ch},

where ch is an ASCII character whose control-equivalent is wanted. Thus you put in an `f'

when you want to indicate a `control-f'. For example, to specify `control-f', you would

enter

\ctrl{f}

which produces

"f

In the Info �le, this generates the speci�ed control character, output literally into the �le. This

is done so a user can copy the speci�ed control character (along with whatever else he or she

wants) into another Emacs bu�er and use it. Since the `control-h',`control-i', and `control-j'

characters are formatting characters, they should not be indicated this way.

In a printed manual, this generates text to describe or identify that control character: an

uparrow followed by the character ch.

4.1. INDICATING DEFINITIONS, COMMANDS, ETC. 39

4.1.5 \samp{text}

Use the \samp command to indicate text that is a literal example of a sequence of characters

in a �le, string, pattern, etc. Enclose the text in braces. The argument appears within `. . .'

quotation in both the Info �le and the printed manual; in addition, it is printed in a �xed-width

font.

To match \samp{foo} at the end of the line,

use the regexp \samp{foo$}.

produces

To match `foo' at the end of the line, use the regexp `foo$'.

\samp is used for entire statements in C, for entire shell commands, and for names of

command-line options. Use it for bu�er names in Emacs and for node names in Info or LaTeX-

info. Often \samp is a catchall for whatever is not covered by \code, \kbd, or \key.

Only include punctuation marks within braces if they are part of the string you are speci-

fying. Write punctuation marks outside the braces if those punctuation marks are part of the

English text that surrounds the string. In the following sentence, for example, the commas and

period are outside of the braces:

In English, the vowels are \samp{a}, \samp{e},

\samp{i}, \samp{o}, \samp{u}, and sometimes

\samp{y}.

This produces:

In English, the vowels are `a', `e', `i', `o', `u', and sometimes `y'.

4.1.6 \var{metasyntactic-variable}

Use the \var command to indicate metasyntactic variables. A metasyntactic variable is some-

thing that stands for another piece of text. For example, you should use a metasyntactic

variable in the documentation of a function to describe the arguments that are passed to that

function.

Do not use \var for the names of particular variables in programming languages. These

are speci�c names from a program, so \code is correct for them. For example, the Lisp

variable latexinfo-latex-command is not a metasyntactic variable; it is properly formatted

using \code.

The e�ect of \var in the Info �le is to upcase the argument; in the printed manual, to

italicize it. For example:

To delete file \var{filename},

type \code{rm \var{filename}}.

40 CHAPTER 4. MARKING WORDS AND PHRASES

produces

To delete �le �lename, type rm �lename .

(Note that \var may appear inside of \code, \samp, \file, etc.)

Write a metasyntactic variable all in lower case without spaces, and use hyphens to make

it more readable. In some documentation styles, metasyntactic variables are shown with angle

brackets, for example:

. . ., type rm <filename>

Although this is not the style we use in L

a

T

E

Xinfo, you can, of course, write your own L

a

T

E

Xinfo

formatting commands to output the <. . .> format if you wish. See section 18 [Extending

LaTeXinfo], page 153.

4.1.7 \file{�le-name}

Use the \file command to indicate text that is the name of a �le, bu�er, or directory, or is

the name of a node in Info. You can also use the command for �lename su�xes. Don't use

\file for symbols in a programming language; thus, a node name is a name in an Info �le but

not an identi�er in a programming language.

Currently, \file is equivalent to \samp in its e�ects on the output. For example,

The \file{.el} files are in

the \file{/usr/local/emacs/lisp} directory.

produces

The `.el' �les are in the `/usr/local/emacs/lisp' directory.

4.1.8 \dfn{term}

Use the \dfn command to identify the introductory or de�ning use of a technical term. Use

the command only in passages whose purpose is to introduce a term which will be used again

or which the reader ought to know. Mere passing mention of a term for the �rst time doesn't

deserve \dfn. The command generates italics in the printed manual, and double quotation

marks in the Info �le. For example:

Getting rid of a file is called \dfn{deleting} it.

produces

Getting rid of a �le is called deleting it.

As a general rule, a sentence containing the de�ning occurrence of a term should be a

de�nition of the term. The sentence does not have to say explicitly that it is a de�nition, but

it should contain the information of a de�nition|it should make the meaning clear.

4.2. EMPHASIZING TEXT 41

4.2 Emphasizing Text

Usually, L

a

T

E

Xinfo changes the font to mark words in the text according to what category the

words belong to. The \code command, for example, does this. Most often, this is the best

way to mark words. However, sometimes you will want to emphasize text without indicating a

category. L

a

T

E

Xinfo has two ways to do this: commands that tell L

a

T

E

Xinfo to emphasize the

text but leave the method to the program, and commands that specify the method to use. The

�rst way is generally the best because it makes it possible to change the style of a document

without needing to re-edit it line by line.

4.2.1 \emph{text} and \strong{text}

The \emph and \strong commands are for emphasis; \strong is stronger. In printed output,

\emph produces italics and \strong produces bold.

For example,

\begin{quote}

\strong{Caution:} \code{rm * .[^.]*} removes \emph{all}

files in the directory.

\end{quote}

produces the following in printed output:

Caution: rm * .[^.]* removes all �les in the directory.

and the following in Info:

Caution: `rm * .[^.]*' removes *all*

files in the directory.

The \strong command is seldom used except to mark what is, in e�ect, a typographical

element, such as the word `Caution' in the preceding example.

1

In the Info �le, both \emph and \strong put asterisks around the text.

4.2.2 The Small Caps Font

Use the `\scap' command to set text in the printed output in a small caps font and set

text in the Info �le in upper case letters.

Write the text between braces in lower case, like this:

The \sc{acm} and \sc{ieee} are technical societies.

This produces:

1

Don't try to use \emph or \strong with the word `Note'; Info will mistake the combination for a cross

reference. Use a phrase such as Please note or Caution instead.

42 CHAPTER 4. MARKING WORDS AND PHRASES

The acm and ieee are technical societies.

L

a

T

E

X typesets the small caps font in a manner that prevents the letters from `jumping out

at you on the page'. This makes small caps text easier to read than text in all upper case.

L

a

T

E

X typesets any upper case letters in the small caps fonts in FULL-SIZE CAPITALS.

Use them sparingly. The Info formatting commands set all small caps text in upper case.

You may also use the small caps font for acronyms such as ato (a nasa word meaning

`abort to orbit').

There are subtleties to using the small caps font with a jargon word such as cdr, a word

used in Lisp programming. In this case, you should use the small caps font when the word

refers to the second and subsequent elements of a list (the cdr of the list), but you should use

`\code' when the word refers to the Lisp function of the same spelling.

4.2.3 Fonts for Printing, Not Info

L

a

T

E

Xinfo provides four font commands that specify font changes in the printed manual but

have no e�ect in the Info �le. \i requests italic font (in some versions of L

a

T

E

X, a slanted

font is used), \b requests bold face, \t requests the fixed-width font used by \code, and \r

requests a roman font, which is the usual font in which text is printed. In addition \n requests

the fontsize be set in the normal size of the typeface, All the commands apply to an argument

that follows, surrounded by braces. All four commands apply to an argument that follows,

surrounded by braces.

Only the \r command has much use: in example programs, you can use the \r command to

convert code comments from the �xed-width font to a roman font. This looks better in printed

output.

For example,

\begin{lisp}

(+ 2 2) ; \r{Add two plus two.}

\end{lisp}

produces

(+ 2 2) ; Add two plus two.

If possible, you should avoid using the other three font commands. If you need to use one,

it probably indicates a gap in the L

a

T

E

Xinfo language.

4.3 Special Insertions

L

a

T

E

Xinfo provides several commands for formatting dimensions, for inserting single characters

that have special meaning in L

a

T

E

Xinfo, such as braces, and for inserting special graphic symbols

that do not correspond to characters, such as dots and bullets.

These are:

4.3. SPECIAL INSERTIONS 43

� Braces, `\' and periods.

� Format a dimension, such as `12pt'.

� Dots and bullets.

� The L

a

T

E

X logo and the copyright symbol.

� A minus sign.

� The \verb command, for inserting characters verbatim.

4.3.1 Inserting \, Braces, and Periods

`\' and curly braces are special characters in LaTeXinfo. Periods are also special. Depending

on whether the period is inside of or at the end of a sentence, less or more space is inserted

after a period in a typeset manual. Since it is not always possible for L

a

T

E

Xinfo to determine

when a period ends a sentence and when it is used in an abbreviation, special commands are

needed in some circumstances. (Usually, L

a

T

E

Xinfo can guess how to handle periods, so you

don't have to use the special commands; you just enter a period as you would if you were using

a typewriter, which means you put two spaces after the period, question mark, or exclamation

mark that ends a sentence.) Do not put braces after any of these commands; they are not

necessary.

4.3.1.1 Inserting \|\back

\back stands for a single `\' in either printed or Info output.

Do not put braces after an \back command.

4.3.1.2 Inserting `{' and `}'|\{ and \}

\{ stands for a single `{' in either printed or Info output.

\} stands for a single `}' in either printed or Info output.

Do not put braces after either an \{ or an \} command.

4.3.1.3 Spacing After Colons and Periods

Use the \: command after a period, question mark, exclamation mark, or colon that should

not be followed by extra space. For example, use \: after periods that end abbreviations which

are not at the ends of sentences. \: has no e�ect on the Info �le output.

For example:

The U.S.A. \: is a continental nation.

produces

The U.S.A. is a continental nation.

44 CHAPTER 4. MARKING WORDS AND PHRASES

Use \. instead of a period at the end of a sentence that ends with a single capital letter.

Otherwise, L

a

T

E

X will think the letter is an abbreviation and will not insert the correct end-of-

sentence spacing. Here is an example:

Give it to X. and to Y \. Give it to Z \.

Give it to X. and to Y. Give it to Z.

If you look carefully at this printed output, you will see a little more whitespace after the Y

in the �rst line than the Y in the second line.

Give it to X. and to Y. Give it to Z.

Give it to X. and to Y. Give it to Z.

In the Info �le output, \. is equivalent to a simple `.'. Do not put braces after either an

\: or an \. command.

4.3.2 \dmn{dimension}: Format a Dimension

At times, you may want to write `12pt' or `8.5in' with little or no space between the number

and the abbreviation for the dimension. You can use the \dmn command to do this. On seeing

the command, L

a

T

E

X inserts just enough space for proper typesetting; the Info formatting

commands insert no space at all, since the Info �le does not require it. To use the \dmn

command, write the number and then follow it immediately, with no intervening space, by

\dmn, and then by the dimension within braces.

For example,

A4 paper is 8.27 \dmn{in} wide.

produces

A4 paper is 8.27in wide.

Not everyone uses this style. Instead of `8.27in', you may write `8.27 in.' or `8.27

inches'.

4.3.3 Inserting Ellipsis, Dots, and Bullets

An ellipsis (a line of dots) is typeset unlike a string of periods, so a special command is used

for ellipsis in LaTeXinfo. The \bullet command is special, too. Each of these commands is

followed by a pair of braces, `{}', without any whitespace between the name of the command

and the braces.

4.3. SPECIAL INSERTIONS 45

\dots{} Use the \dots{} command to generate an ellipsis, which is three dots in a row,

appropriately spaced, like this: `. . .'. Do not simply write three periods in the input �le; that

would work for the Info �le output, but would produce the wrong amount of space between

the periods in the printed manual.

Here is an ellipsis: . . .

Here are three periods in a row: ...

In printed output, the three periods in a row are closer together than the dots in the ellipsis.

\bullet{} Use the \bullet{} command to generate a large round dot, or the closest possible

thing to one. In Info, an asterisk is used.

Here is a bullet: �

4.3.4 Inserting L

a

T

E

X and the Copyright Symbol

The logo L

a

T

E

X is typeset in a special fashion and it needs an \-command, as does the command

for inserting the copyright symbol. Each of these commands is followed by a pair of braces,

`{}', without any whitespace between the name of the command and the braces.

\LaTeX{} Use the \LaTeX{} command to generate `L

a

T

E

X'. In a printed manual, this is a

special logo that is di�erent from three ordinary letters. In Info, it just looks like `LaTeX'. The

\LaTeX{} command is amongst the few L

a

T

E

Xinfo commands in that the L, T and the X are in

upper case.

\copyright{} Use the \copyright{} command to generate `
c
 '. In a printed manual, this

is a `c' inside a circle, and in Info, this is `(C)'.

4.3.5 Inserting a Minus Sign

Use the \minus{} command to generate a minus sign. In a �xed-width font, this is a single

hyphen, but in a proportional font, the symbol is the customary length for a minus sign|a

little longer than a hyphen.

You can compare the two forms:

`�' is a minus sign generated with ` \minus{}',

`-' is a hyphen generated with the character `-'.

In the �xed-width font used by Info, \minus{} is the same as a hyphen.

You should not use \minus{} inside of \code or \begin{example} because the width

distinction is not made in the �xed-width font they use.

46 CHAPTER 4. MARKING WORDS AND PHRASES

4.3.6 Inserting Characters Verbatim

You can use the L

a

T

E

X \verb command to inserting characters verbatim. The next character

after the command must be a non-alphabetic or numeric character, such as `+'. Any characters

between this marker character, and the next occurence of this marker character, will be pro-

tected from any operations in L

a

T

E

X or Info. The contents will be displayed in a �xed-width

font. Unlike L

a

T

E

X, L

a

T

E

Xinfo has a restriction on the use of the \verb command: it must

occur at the beginning of a line (or preceded only by whitespace). Hence you will usually use

it something like:

characters to \scap{ascii} double-quotes:

\verb+``+ and

\verb+''+

to \samp{"}.\refill

Chapter 5

Displaying Material

Displayed Material are blocks of text consisting of one or more whole paragraphs that are set

o� from the bulk of the text and treated di�erently. They are usually indented.

In L

a

T

E

Xinfo, you always begin a quotation or example by writing an \begin-command at

the beginning of a line by itself, and end it by writing an \end command that is also at the

beginning of a line by itself. For instance, you begin an example by writing \begin{example}

by itself at the beginning of a line and end the example by writing \end{example} on a line

by at itself, at the beginning of that line.

Since the lines containing \begin{example} and \end{example} will be turned into blank

lines, you won't need to put a blank line before the \begin{example}, and another blank line af-

ter the \end{example}. (Remember that blank lines between the beginning \begin{example}

and the ending \end{example} will also appear in the Info output.)

There are a variety of commands for Displaying Material:

\begin{quote} Used to indicate text that is quoted. The text is �lled, and printed in a roman

font by default.

\begin{quotation} Used to indicate text that is quoted. The text is �lled, indented, and

printed in a roman font by default.

\begin{display} Used for illustrative text. The text is indented but not �lled, and no font is

speci�ed (so, by default, the font is roman).

\begin{format} Used for illustrative text. The text is not indented and not �lled and no

font is speci�ed (so, by default, the font is roman).

\begin{center} Used to center a body of text.

\begin{ushleft} Used to line up the left margin of un�lled text.

\begin{flushright} Used to line up the right margin of un�lled text.

\begin{lisp} Used to illustrate Lisp code. The text is printed in a �xed-width font without

�lling.

47

48 CHAPTER 5. DISPLAYING MATERIAL

\begin{smalllisp} Used to illustrate Lisp code. The text is printed in a smaller �xed-width

font.

\begin{example} Used to illustrate code, and commands. The text is printed in a �xed-

width font without �lling.

\begin{smallexample} Used to illustrate code, commands, and the like, in a smaller font.

\begin{verbatim} Used to illustrate code and commands, but the text is protected from

processing by L

a

T

E

X and Info, and is printed in a �xed-width font without �lling.

\begin{smallverbatim} Used to illustrate code, commands, and the like. The content is

protected from processing by L

a

T

E

X and Info, and is set in a smaller font.

The \exdent command is used within the above constructs (except of course for the

verbatim ones) to undo the indentation of a line.

The \noindent command may be used after one of the above constructs to prevent the

following text from being indented as a new paragraph.

5.1 Quotations

5.1.1 Quotations

The text of a quote is processed normally except that

� The margins are closer to the center of the page, so the whole of the quotation is o�set.

� The �rst lines of paragraphs are indented no more than the other lines.

� In the printed output, interline spacing and interparagraph spacing are reduced.

This is an example of text written between an \begin{quote} command and an

\end{quote} command. A \begin{quote} command is most often used to indicate

text that is excerpted from another (real or hypothetical) printed work.

Write an \begin{quote} command as text of a line by itself. This line will disappear from

the output. Mark the end of the quotation with a line beginning with and containing only

\end{quote}. The \end{quote} line will likewise disappear from the output. Thus, the input

\begin{quote}

This is

a foo.

\end{quote}

produces

This is a foo.

The text of a \begin{quotation} environment is processed the same way, except that the

�rst line of the text is indented.

5.2. JUSTIFYING TEXT 49

5.2 Justifying Text

5.2.1 Left Justi�cation and Right Justi�cation

The \begin{flushleft} and \begin{flushright} commands line up the left or right ends of

lines on the left and right margins of a page, but do not �ll the text. The commands are written

on lines of their own, without braces. The \begin{flushleft} and \begin{flushright}

commands are ended by \end{flushleft} and \end flushright commands on lines of their

own.

For example,

\begin{flushleft}

This text is

written flushleft.

\end{flushleft}

produces

This text is written ushleft. The \code{\begin{ushleft}}

command left justi�es every line but leaves the

right end ragged.

Flushright produces the type of indentation often used in the return address of letters.

\begin{flushright}

Here is an example of text written

flushright. The \code{ \begin{flushright}} command

right justifies every line but leaves the

left end ragged.

\end{flushright}

produces

Here is an example of text written ushright. The \begin{flushright} command right

justi�es every line but leaves the left end ragged.

5.2.1.1 Center Environment

Text enclosed in a center environment produces lines of output containing text centered be-

tween the margins. This is the same as the center environment of L

a

T

E

X, and di�erent from

the T

E

Xinfo command of the same name.

50 CHAPTER 5. DISPLAYING MATERIAL

5.3 Display Environments

5.3.1 \begin{display}

The \begin{display} command begins a kind of example. It is like the \begin{example}

command except that, in a printed manual, \begin{display} does not select the �xed-width

font. In fact, it does not specify the font at all, so that the text appears in the same font it

would have appeared in without the \begin{display} command.

This is an example of text written between an

\begin{display} command and an \end{display}

command. The \begin{display} command indents the text,

but does not fill it.

5.3.2 \begin{format}

The \begin{format} command is similar to \begin{example} except that, in the printed

manual, \begin{format} does not select the �xed-width font and does not narrow the margins.

This is an example of text written between an \

begin{format} command and an \end{format} command. The

\begin{format} command does not fill the text.

5.4 Examples and Verbatim

5.4.1 \begin{example}

The \begin{example} command is used to indicate an example that is not part of the running

text, such as computer input or output.

This is an example of text written between an \begin{example}

command and an \end{example} command. The text is

indented but not filled.

In the printed manual, the text is typeset in a fixed-width font, and

extra spaces and blank lines are significant. In the Info file, an

analogous result is obtained by indenting each line with five extra

spaces.

Write an \begin{example} command at the beginning of a line (or possibly preceded by

whitespace) as the only text on a line by itself. This line will turn into a blank line in the Info

output. Mark the end of the example with a line beginning containing only \end{example}

(or possibly preceded by whitespace). The \end{example} will likewise turn into a blank line

in the Info output. For example:

5.4. EXAMPLES AND VERBATIM 51

\begin{example}

mv foo bar

\end{example}

produces

mv foo bar

Caution: Do not use tabs in lines of an example (or anywhere else in L

a

T

E

Xinfo,

for that matter)! L

a

T

E

X treats tabs like single spaces, and that is not what they

look like. This is a problem with L

a

T

E

X. (If necessary, in Emacs, you can use M-x

untabify to convert tabs in a region to multiple spaces.)

Examples are often, logically speaking, \in the middle" of a paragraph, and the text con-

tinues after an example should not be indented. The \noindent command prevents a piece of

text from being indented as if it were a new paragraph.

(The \code command is used for examples of code that is embedded within sentences, not

set o� from preceding and following text. See section code in \code.)

5.4.2 \noindent

If you have text following an \begin{example} or other similar inclusion that reads as a

continuation of the text before the \begin{example}, it is good to prevent this text from

being indented as a new paragraph. To accomplish this, write \noindent at the beginning of

a line by itself preceding the continuation text. For example,

\begin{example}

This is an example

\end{example}

\noindent

This line will not be indented. As you can see, the

beginning of the line is fully flush left with the line

that follows after it. (This whole example is between

\begin{display} and \end{display}.)

produces

This is an example

This line will not be indented. As you can see, the beginning of the

line is fully flush left with the line that follows after it. (This

whole example is between \begin{display} and

\end{display}.)

52 CHAPTER 5. DISPLAYING MATERIAL

To adjust the number of blank lines properly in the Info �le output, remember that the

line containing \noindent does not generate a blank line, and neither does the \end{example}

line.

In the L

a

T

E

Xinfo source �le for this documentation, each of the lines that says `produces' is

preceded by a line containing \noindent. Do not put braces after an \noindent command.

The smallexample environment sets its contents in a smaller font.

5.4.3 \begin{lisp}

The \begin{lisp} command is used for Lisp code. It is synonymous with the

\begin{example} command.

This is an example of text written between an

\begin{lisp} command and an \end{lisp} command.

Use \begin{lisp} instead of \begin{example} so as to preserve information regarding the

nature of the example. This is useful, for example, if you write a function that evaluates only

and all the Lisp code in a L

a

T

E

Xinfo �le. Then you can use the L

a

T

E

Xinfo �le as a Lisp library.

1

Mark the end of \begin{lisp} with \end{lisp} on a line by itself.

The smalllisp environment sets its contents in a smaller font.

5.4.4 Verbatim Environment

The verbatim environment is very similar to the example environment except that no parsing

of the contents is carried out, and the text is not indented. In the Info �le things will appear

exactly as they have been typed in. In the printed manual, this is the same as the L

a

T

E

X

command of the same name. Verbatim environments cannot be nested, nor can they appear

inside another environment such as example. The \begin{verbatim} and \end{verbatim}

must occur at the beginning of a line.

The smallverbatim environment sets its contents in a smaller font.

The verbatimfile command includes the contents of a �le with a verbatim environment.

The command is followed by an \end{verbatim} command, such as

\verbatimfile{foo.bar}

\end{verbatim}

The smallverbatimfile command sets its argument in a smaller font, and is terminated

by an \end{smallverbatim} command.

1

It would be straightforward to extend L

a

T

E

Xinfo to work in a similar fashion for C, Fortran, or other

languages.

5.5. CONTROLLING INDENTATION 53

5.5 Controlling Indentation

5.5.1 exdent: Undoing a Line's Indentation

The \exdent command removes any indentation a line might have. The command is written

at the beginning of a line and applies only to the text that follows the command that is on the

same line. Don't use braces around the text. In the printed manual, the text on the \exdent

line is printed in the roman font.

\exdent is usually used within examples. Thus,

\begin{example}

This line follows an \begin{example} command.

\exdent{This line is exdented.}

This line follows the exdented line.

The \end{example} comes on the next line.

\end{example}

produces

This line follows an \begin{example} command.

This line is exdented.

This line follows the exdented line.

The \end{example} comes on the next line.

In practice, the \exdent command is rarely used. Usually, you un-indent text by ending

the example and returning the page to its normal width.

5.6 Drawing Cartouches Around Examples

In a printed manual, the cartouche environment draws a box with rounded corners around

its contents. Pair with \end{cartouche}. You can use this command to further highlight an

example or quotation. For instance, you could write a manual in which one type of example is

surrounded in a cartouche to emphasize them.

The \cartouche command a�ects only the printed manual; it has no e�ect in the Info �le.

For example,

\begin{example}

\cartouche

% pwd

/usr/local/lib/emacs/info

\end{cartouche}

\end{example}

54 CHAPTER 5. DISPLAYING MATERIAL

produces

� �

% pwd

/usr/local/lib/emacs/info

 	

surrounds the two-line example with a box with rounded corners, in the printed manual.

5.7 Special Glyphs for Examples

In L

a

T

E

Xinfo, code is often illustrated in examples that are delimited by \begin{example} and

\end{example}, or by \begin{lisp} and \end{lisp}. In such examples, you can indicate the

results of evaluation or an expansion using `

)

' or `

7!

'. Likewise, there are special symbols to

indicate printed output, an error message, equivalence of expressions, and the location of point.

The special glyph commands do not have to be used within an example. Every special glyph

command is followed by a pair of left- and right-hand braces.

Here are the di�erent special glyph commands:

)

\result{} points to the result of an expression.

7!

\expansion{} shows the results of a macro expansion.

a

\print{} indicates printed output.

error

\error{} indicates that the following text is an error message.

�

\equiv{} indicates the exact equivalence of two forms.

? \point{} shows the location of point.

5.7.1

)

: Indicating Evaluation

Use the \result{} command to indicate the result of evaluating an expression. The \result{}

command is displayed as `=>' in Info and as `

)

' in the printed output. Thus, the following,

(cdr '(1 2 3))

)

(2 3)

may be read as \(cdr '(1 2 3)) evaluates to (2 3)".

5.7. SPECIAL GLYPHS FOR EXAMPLES 55

5.7.2

7!

: Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicate the

result of the expansion with the \expansion{} command. The \expansion{} command is

displayed as `==>' in Info and as `

7!

' in the printed output. For example, the following

\begin{lisp}

(third '(a b c))

\expansion{} (car (cdr (cdr '(a b c))))

\result{} c

\end{lisp}

produces

(third '(a b c))

7!

(car (cdr (cdr '(a b c))))

)

c

which may be read as:

(third '(a b c)) expands to (car (cdr (cdr '(a b c)))); the result of evaluating

the expression is c.

(Often, as in this case, an example looks better if the \expansion{} and \result{} com-

mands are indented �ve spaces.)

5.7.3

a

: Indicating Printed Output

Sometimes an expression will print output during its execution. You can indicate the printed

output with the \print{} command. The \print{} command is displayed as `-|' in Info and

as `

a

' in the printed output.

In the following example, the printed text is indicated with `

a

', and the value of the

expression follows on the last line.

(progn (print 'foo) (print 'bar))

a

foo

a

bar

)

bar

In a L

a

T

E

Xinfo source �le, this example is written as follows:

56 CHAPTER 5. DISPLAYING MATERIAL

\begin{lisp}

(progn (print 'foo) (print 'bar))

\print{} foo

\print{} bar

\result{} bar

\end{lisp}

5.7.4

error

: Indicating an Error Message

A section of code may cause an error when you evaluate it. You can designate the error message

with the \error{} command. The \error{} command is displayed as `error-->' in Info and

as `

error

' in the printed output. Thus,

\begin{lisp}

(+ 23 'x)

\error{} Wrong type argument: integer-or-marker-p, x

\end{lisp}

produces

(+ 23 'x)

error
Wrong type argument: integer-or-marker-p, x

This indicates that the following error message is printed when you evaluate the expression:

Wrong type argument: integer-or-marker-p, x

Note that `

error

' itself is not part of the error message.

5.7.5

�

: Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equivalence of

two forms with the \equiv{} command. The \equiv{} command is displayed as `==' in Info

and as `

�

' in the printed output.

Thus,

\begin{lisp}

(make-sparse-keymap) \equiv{} (list 'keymap)

\end{lisp}

produces

(make-sparse-keymap)

�

(list 'keymap)

This indicates that evaluating (make-sparse-keymap) produces identical results to evaluating

(list 'keymap).

5.8. CONDITIONALLY VISIBLE TEXT 57

5.7.6 Indicating Point in a Bu�er

Sometimes you need to show an example of text in an Emacs bu�er. In such examples, the

convention is to include the entire contents of the bu�er in question between two lines of dashes

containing the bu�er name.

You can use the `\point{}' command to show the location of point in the text in the bu�er.

(The symbol for point, of course, is not part of the text in the bu�er; it indicates the place

between two characters where point is located.) The \point{} command is displayed as `-!-'

in Info and as `?' in the printed output.

The following example shows the contents of bu�er `foo' before and after evaluating a Lisp

command to insert the word changed.

---------- Buffer: foo ----------

This is the ?contents of foo.

---------- Buffer: foo ----------

(insert "changed ")

)

nil

---------- Buffer: foo ----------

This is the changed ?contents of foo.

---------- Buffer: foo ----------

In a L

a

T

E

Xinfo source �le, the example is written like this:

\begin{example}

---------- Buffer: foo ----------

This is the \point{}contents of foo.

---------- Buffer: foo ----------

(insert "changed ")

\result{} nil

---------- Buffer: foo ----------

This is the changed \point{}contents of foo.

---------- Buffer: foo ----------

\end{example}

5.8 Conditionally Visible Text

Sometimes it is good to use di�erent text for a printed manual and its corresponding Info �le.

In this case, you can use the conditional commands to specify which text is for the printed

manual and which is for the Info �le.

58 CHAPTER 5. DISPLAYING MATERIAL

\begin{ifinfo} begins text that should be ignored by L

a

T

E

X when it typesets the printed

manual. The text appears only in the Info �le. The \begin{ifinfo} command should appear

on a line by itself. End the Info-only text with a line containing \end{ifinfo} by itself. The

\begin{iftex} and \end{iftex} commands are used similarly but to delimit text that will

appear in the printed manual but not in the Info �le.

For example,

\begin{iftex}

This text will appear only in the printed manual.

\end{iftex}

\begin{ifinfo}

However, this text will appear only in Info.

\end{ifinfo}

The preceding example produces the following. Note how you only see one of the two lines,

depending on whether you are reading the Info version or the printed version of this manual.

This text will appear only in the printed manual.

5.8.1 Using Ordinary L

a

T

E

X Commands

Inside a region delineated by \begin{iftex} and \end{iftex}, you can embed some L

a

T

E

X

commands. Info will ignore these commands since they are only in that part of the �le that is

seen by L

a

T

E

X.

You can enter L

a

T

E

X completely by delineating a region with the \begin{tex} and

\end{tex} commands. The characters # $ % ^ & _ | all revert to their normal L

a

T

E

X mean-

ings. The \begin{tex} command also causes Info to ignore the region, like the \begin{iftex}

command.

For example, here is some mathematics:

\begin{tex}

$ \bigl(x \in A(n) \bigm|x \in B(n) \bigr)$

\end{tex}

The output of this example will appear only in the printed manual. If you are reading

this in Info, you will not see anything after this paragraph. In the printed manual, the above

mathematics looks like this:

(x 2 A(n) j x 2 B(n))

Chapter 6

Making Lists Tables and

Descriptions

L

a

T

E

Xinfo has several ways of making lists and tables. Lists can be bulleted or numbered, while

descriptions can highlight the items in the �rst column.

L

a

T

E

Xinfo automatically indents the text in lists or descriptions, and numbers an enumer-

ated list. This last feature is useful if you modify the list, since you do not have to renumber

it yourself.

Numbered lists and tables begin with the appropriate \begin command at the beginning

of a line, and end with the corresponding \end command on a line by itself. Begin an enu-

merated list, for example, with an \begin{enumerate} command and end the list with an

\end{enumerate} command. Begin an itemized list with an \begin{itemize} command, and

end the list with an \end{itemize} command. You precede each element of a list with an

\item command.

Here is an itemized list of the di�erent kinds of table and lists:

� Itemized lists with and without bullets.

� Numbered lists.

� Descriptions with highlighting.

Here is an enumerated list with the same items:

1. Itemized lists with and without bullets.

2. Numbered lists.

3. Descriptions with highlighting.

And here is a description with the same items and their \-commands:

\begin{itemize} Itemized lists with and without bullets.

59

60 CHAPTER 6. MAKING LISTS TABLES AND DESCRIPTIONS

\begin{enumerate} Numbered lists.

\begin{description} two-column descriptions with highlighting.

\begin{tabular} Multio{column tables.

6.1 Itemize Environment

The \begin{itemize} is used to produce sequences of indented paragraphs, with a mark

inside the left margin at the beginning of each paragraph. The text of the indented paragraphs

themselves come after the \begin{itemize}, up to another line that says \end{itemize}.

Before each paragraph for which a mark in the margin is desired, place a line that says just

\item. It's best not to put any other text on this line.

Before each paragraph for which a mark in the margin is desired, place a line that says just

\item. Don't put any other text on this line.

Usually, you should put a blank line before an \item. This puts a blank line in the Info

�le. (L

a

T

E

X inserts the proper interline whitespace in either case.) Except when the entries are

very brief, these blank lines make the list look better.

Here is an example of the use of \begin{itemize}, followed by the output it produces.

\begin{itemize}

\item

Some text for foo.

\item

Some text

for bar.

\end{itemize}

produces

� Some text for foo.

� Some text for bar.

Itemized lists may be embedded within other itemized lists.

6.2 Enumerate Environment

\begin{enumerate} is like \begin{itemize} except that the marks in the left margin contain

successive integers starting with 1. (See the preceeding section.) Do not put any argument on

the same line as \begin{enumerate}.

Normally, you should put a blank line between the entries in the list. This generally makes

it easier to read the Info �le.

6.3. DESCRIPTION ENVIRONMENT 61

\begin{enumerate}

\item

Some text for foo.

\item

Some text for bar.

\end{enumerate}

produces

1. Some text for foo.

2. Some text for bar.

6.3 Description Environment

The description environment is similar to \begin{itemize}, but allows you to specify a

name or heading line for each item. (See section 6.1 [Itemize Environment], page 60.) The

command is used to produce two-column descriptions, and is especially useful for glossaries and

explanatory exhibits. You must follow each use of \item inside of the description environment

with text to serve as the heading line for that item. This text is put inside square brackets

on the same line as the \item command. Each heading line is put into the �rst column of

the table and the supporting text, which you put on the line following the line beginning with

\item, goes into the second column.

Usually, you should put a blank line before a \item. This puts a blank like in the Info �le.

Except when the entries are very brief, a blank line looks better. The following description

highlights the text in the �rst column:

\begin{description}

\item[foo]

This is the text for \samp{foo}.

\item[bar]

This is the text for \samp{bar}.

\end{description}

produces

foo This is the text for `foo'.

bar This is the text for `bar'.

62 CHAPTER 6. MAKING LISTS TABLES AND DESCRIPTIONS

Info indents the lines of text in the second column, but does not automatically �ll them.

As a result, the lines in the Info �le may be too wide. To prevent this, cause Info to re�ll the

paragraphs after processing by adding the command \refill to the end of the paragraph. (See

section 7.4 [Re�lling Paragraphs], page 68, for more information about the use of the \refill

command.)

6.4 Tabular Environment

The L

a

T

E

X tabular environment is weakly supported by L

a

T

E

Xinfo. This environment makes it

easy to set small multi{column tables. The ampersand character has its special L

a

T

E

X meaning

of a separator in tables. To insert a &, type \&.

In the tabular environment, you must line the columns up the way you want them to

appear in the Info �le, and you must use & as a separator. In the Info �le, the separator will

become a SPC character thus preserving the alignment. The trailing \\ will be stripped; these

must occur at the end of the line.

The hline command is supported by the Info program. It will insert a line of hyphens

all the way to the current fill-column. Neither the cline or multicolumn commands are

supported. For example:

\begin{table}[hbtp]

\caption{The First Table's Caption}

\begin{tabular}{||l|l|l|l||}

\hline

Column A & Column B & Column C & Column D \\

\hline

A 1 & B 1 & C 1 & D 1 \\

A 2 & B 2 & C 2 & D 2 \\

A 3 & B 3 & C 3 & D 3 \\

\hline

\end{tabular}

\end{table}

produces in the Info �le

Table 1 : The First Table's Caption

--

Column A Column B Column C Column D

--

A 1 B 1 C 1 D 1

A 2 B 2 C 2 D 2

A 3 B 3 C 3 D 3

--

6.5. FIGURES AND TABLES 63

and in the L

a

T

E

X �le this produces:

Table 6.1: The First Table's Caption

Column A Column B Column C Column D

A 1 B 1 C 1 D 1

A 2 B 2 C 2 D 2

A 3 B 3 C 3 D 3

The L

a

T

E

X math environments displaymath, equation, eqnarray and array are com-

pletely ignored in the Info �le, but will have their L

a

T

E

X de�nitions in the printed manual.

6.5 Figures and Tables

Tables and Figures are only weakly supported by L

a

T

E

Xinfo. Anything within a figure envi-

ronment is completely ignored in the Info �le: \begin{figure} is equivalent to \begin{tex}

\begin{table} is supported by L

a

T

E

Xinfo, as is the caption command. The lines contain-

ing the \begin{table} and \end{table} are deleted from the Info �le. The caption command

causes its argument to be centered on a line, preceded by the word Table and the table number.

captions are assumed to be within tables because �gures are not supported.

64 CHAPTER 6. MAKING LISTS TABLES AND DESCRIPTIONS

Chapter 7

Formatting Paragraphs

7.1 Making and Preventing Breaks

Usually, a L

a

T

E

Xinfo �le is processed both by L

a

T

E

X and by one of the Info formatting com-

mands. Sometimes line, paragraph, or page breaks occur in the `wrong' place in one or other

form of output. You must ensure that text looks right both in the printed manual and in the

Info �le.

For example, in a printed manual, page breaks may occur awkwardly in the middle of an

example; to prevent this, you can hold text together using a grouping command that keeps the

text from being split across two pages. Conversely, you may want to force a page break where

none would occur normally. Fortunately, problems like these do not often arise. When they

do, use the following commands.

7.2 The Line Breaking Commands

The line break commands create line breaks:

* Force a line break in the printed manual and in the Info �le.

\\ Force a line break in the Info �le.

\sp{n} Skip n blank lines.

The line-break-prevention command holds text together all on one line.

\w{text} Prevent text from being split across two lines.

7.2.1 *: Generate Line Breaks

The * command forces a line break in both the printed manual and in Info. The \\ command

forces a line break in the printed manual. The optional argument to the L

a

T

E

X \\ command is

not supported in L

a

T

E

Xinfo.

For example,

65

66 CHAPTER 7. FORMATTING PARAGRAPHS

This line * is broken *in two places.

produces

This line

is broken

in two places.

(Note that the space after the �rst * command is faithfully carried down to the next line.)

This is version 2.0 of the L

a

T

E

X info documentation, *

and is for . . .

In this case, the * command keeps L

a

T

E

X from stretching the line across the whole page in an

ugly manner.

Do not write braces after an * command; they are not needed. Do not write an \refill

command at the end of a paragraph containing an * command; it will cause the paragraph to

be re�lled after the line break occurs, negating the e�ect of the line break.

7.2.2 Preventing Line Breaks

\w{text} outputs text and prohibits line breaks within text.

You can use the \w command to prevent L

a

T

E

X from automatically hyphenating a long

name or phrase that accidentally falls near the end of a line.

You can copy GNU software from \w{ \file{prep.ai.mit.edu}}.

produces

You can copy GNU software from `prep.ai.mit.edu'.

In the L

a

T

E

Xinfo �le, you must write the \w command and its argument (all the a�ected

text) all on one line.

Do not write an \refill command at the end of a paragraph containing an \w command;

it will cause the paragraph to be re�lled and may thereby negate the e�ect of the \w command.

7.2.3 Inserting Blank Lines

A line beginning with and containing only \sp n generates n blank lines of space in both the

printed manual and the Info �le. \sp also forces a paragraph break. For example,

\sp{2}

generates two blank lines.

7.3. THE PAGE BREAKING COMMANDS 67

7.3 The Page Breaking Commands

The pagination commands apply only to printed output, since Info �les do not have pages.

\clearpage Start a new page in the printed manual.

\begin{same} Hold text together that must appear on one printed page.End the text to be

held together with \begin{same}

\need{mils} Start a new printed page if not enough space on this one.

7.3.1 Start a New Page

A line containing only \clearpage starts a new page in a printed manual. The command has

no e�ect on Info �les since they are not paginated. An \clearpage command is often used in

the title section of a L

a

T

E

Xinfo �le to start the copyright page.

7.3.2 Putting things on the Same Page

The \begin{same} command (on a line by itself) is used inside of an \begin{example} or

similar construct to begin an unsplittable vertical group, which will appear entirely on one

page in the printed output. The group is terminated by a line containing only \end{same}.

These two lines produce no output of their own, and in the Info �le output they have no e�ect

at all.

Although \begin{same} would make sense conceptually in a wide variety of con-

texts, its current implementation works reliably only within \begin{example} and variants,

and within \begin{quote}, \begin{display}, \begin{format}, \begin{flushleft} and

\begin{flushright}. (What all these commands have in common is that they turn o� ver-

tical spacing between \paragraphs".) In other contexts, \begin{same} can cause anomalous

vertical spacing. See section 5 [Displaying Material], page 47.

with the \begin{same} and \end{same} command insides of the \begin{example} and

\end{example} commands.

The \begin{same} command is most often used to hold an example together on one page. In

this L

a

T

E

Xinfo manual, about 100 examples contain text that is enclosed between \begin{same}

and \end group.

7.3.3 Prevent Page Breaks

A line containing only \need n starts a new page in a printed manual if fewer than n mils

(thousandths of an inch) remain on the current page. The \need command has no e�ect on

Info �les since they are not paginated.

This paragraph is preceded by an \need command that tells L

a

T

E

X to start a new page if

fewer than 300 mils (nearly one-third inch) remain on the page. It looks like this:

68 CHAPTER 7. FORMATTING PARAGRAPHS

\need{300}

This paragraph is preceded by . . .

The \need command is useful for preventing orphans (single lines at the bottoms of printed

pages).

7.4 Re�lling Paragraphs

The \refill command re�lls and, optionally, indents the �rst line of a paragraph.

1

If a paragraph contains long \-constructs, the paragraph may look badly �lled after be-

ing formatted by latexinfo-format-region or latexinfo-format-buffer. This is because

both of thes commands remove \-commands from formatted text but do not re�ll paragraphs

automatically although L

a

T

E

X does. Consequently, some lines become shorter than they were.

To cause these commands to re�ll a paragraph, write \refill at the end of the paragraph.

This command re�lls a paragraph in the Info �le after all the other processing has been done.

\refill has no e�ect on L

a

T

E

X, which always �lls every paragraph that ought to be �lled.

For example, without any indenting, the following

To use \code{foo}, pass \samp{xx%$} and

\var{flag} and type \kbd{x} after running

\code{make-foo}. \refill

produces (in the Info �le)

To use `foo', pass `xx%$' and FLAG and type `x' after

running `make-foo'.

whereas without the \refill it would produce

To use `foo', pass `xx%$' and

FLAG and type `x' after running

`make-foo'.

with the line broken at the same place as in the L

a

T

E

Xinfo input �le.

Write the \refill command at the end of the paragraph. Do not put a space before

\refill; otherwise the command might be put at the beginning of the line when you re�ll the

paragraph in the L

a

T

E

Xinfo �le with Emacs command M-q (fill-paragraph). If this were to

happen, the \refill command might fail to work. Do not put braces after \refill. Because

an \refill command is placed at the end of a paragraph and never at the beginning of a line,

the braces are not necessary.

1

Perhaps the command should have been called the \refillandindent command, but \refill is shorter and

the name was chosen before indenting was available.

7.5. ALWAYS REFILLING PARAGRAPHS 69

You can write an \refill command at the end of a footnote before the footnote's closing

brace, even if the footnote text is embedded in a the middle of a paragraph in the L

a

T

E

Xinfo

�le. This is because the footnote text is extracted from the surrounding text and formatted on

its own.

Also, do not end a paragraph that uses either * or \wwith an \refill command; otherwise,

latexinfo-format-buffer or latexinfo-format-buffer will re�ll the paragraph in spite of

those commands.

In addition to re�lling, the \refill command may insert spaces at the beginning of the �rst

line of the paragraph, thereby indenting that line. The argument to the \paragraphindent

command speci�es the amount of indentation: if the value of the argument is 0, an \refill

command deletes existing indentation. If the value of the argument is greater than 0, an

\refill command indents the paragraph by that number of spaces. And if the value of the

argument is `asis', an \refill command does not change existing indentation. For more

information about the \paragraphindent command, section paragraphindent in Paragraph

Indenting.

The \refill command does not indent entries in a list, table, or de�nition, nor does

\refill indent paragraphs preceded by \noindent.

7.5 Always Re�lling Paragraphs

In practice, one �nds that many paragraphs in a L

a

T

E

Xinfo document need re�lling, and one's

document is littered with \refill commands. One solution is to write a 6000 line `C' program

to do the re�lling automatically. This would have the advantage of great speed, but would

mean maintaining a two versions of the Info formating program, one in `C' and one in Emacs

lisp.

Another solution is to implement a heuristic

2

that searches for likely candidates for re�lling,

and inserts a \refill command there. At the moment, the replacement takes place at any

period followed by two newlines, or a period followed by a newline, followed by \end{. Of

course, no replacements are made within verbatim or smallverbatim environments.

Implementation note: This is implemented as a search and replace of all occurences matching the

string ".\n\n" or ".\n\end{". This feature is likely to slow things down on a large document. This

matching string should probably be changed to the regular expression \\s.\n\n or \\s.\n\end{

2

The `H' in Heuristic is pronounced, as in Hack.

70 CHAPTER 7. FORMATTING PARAGRAPHS

Chapter 8

Citations and Footnotes

8.1 Footnotes

A footnote is for a reference that documents or elucidates the primary text.

1

In L

a

T

E

Xinfo,

footnotes are created with the \footnote command. This command is followed immediately

by a left brace, then by the text of the footnote, and then by a terminating right brace. The

template is: \footnote{text}.

For example, this clause is followed by a sample footnote;

2

in the L

a

T

E

Xinfo source, it looks

like this:

. . .a sample footnote \footnote;{Here is the sample

footnote.} in the L

a

T

E

X info source. . .

In a printed manual or book, the reference mark for a footnote is a small, superscripted

number; the text of the footnote is written at the bottom of the page, below a horizontal line.

In Info, the reference mark for a footnote is a pair of parentheses with the footnote number

between them, like this: `(1)'. Info has two footnote styles, which determine where the text of

the footnote is located:

� In the end of node style, all the footnotes for a single node are placed at the end of that

node. The footnotes are separated from the rest of the node by a line of dashes with the

word `Footnotes' within it. Each footnote begins with an `(n)' reference mark.

Here is an example of a single footnote in the end of node style:

--------- Footnotes ---------

(1) Here is a sample footnote.

1

A footnote should complement or expand upon the primary text, but a reader should not need to read a

footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago Manual of

Style, which is published by the University of Chicago Press.

2

Here is the sample footnote.

71

72 CHAPTER 8. CITATIONS AND FOOTNOTES

� In the separate style, all the footnotes for a single node are placed in an automatically

constructed node of their own. In this style, a \footnote reference" follows each `(n)'

reference mark in the body of the node. The footnote reference is actually a cross reference

and you use it to reach the footnote node.

The name of the footnotes' node is constructed by appending `-Footnotes' to the name

of the node that contains the footnotes. (Consequently, the footnotes' node for the

`Footnotes' node is `Footnotes-Footnotes'!) The footnotes' node has an `Up' node

pointer that leads back to its parent node.

Here is how the �rst footnote in this manual looks after being formatted for Info in the separate

node style:

File: latexinfo.info Node: Overview-Footnotes, Up: Overview

(1) Note that the first syllable of "texinfo" is pronounced like

"speck", not "hex". . . .

A L

a

T

E

Xinfo �le may be formatted into an Info �le with either footnote style.

Use the \footnotestyle command to specify an Info �le's footnote style. Write this

command at the beginning of a line followed by an argument, either `end' for the end node

style or `separate' for the separate node style. For example:

\footnotestyle{end}

or

\footnotestyle{separate}

The \footnotestyle command should be written in the header, before the \setfilename

and shortly after the \begin{document} at the beginning of a L

a

T

E

Xinfo �le. See section 2.4.4

[Custom Headings], page 19. (If you include the \footnotestyle command between the start

of header and end of header lines, the region formatting commands will format footnotes as

speci�ed.) If you do not specify a footnote style, the formatting commands will chose a default

style.

8.2 Citations

\cite is the L

a

T

E

X command for a bibliographic citations. Citations are usually prepared using

the program BibT

E

X, which formats the citations for use with L

a

T

E

X. The argument to the

\cite command is the citation key, which appears in the printed manual as the citation key

surrounded by square brackets. How it appears in the printed manual is dependent on the

bibliographic style chosen. See the L

a

T

E

X Manual for more details [Lam86].

Before you use the \cite command, you must declare the bibliography style that you are

going to use. See section 2.9.1 [Making a Bibliography], page 27.

Chapter 9

Input and Include Files

L

a

T

E

X has two ways of including �les: with the \input command, and with the \include

command. L

a

T

E

X makes some important distinctions between the two. See [Lam86, x 4.4] for

the exact nature of the di�erences. In L

a

T

E

X. Input �les are simply inserted at the place where

the input command occurs, both in the Info �le and the L

a

T

E

X �le. include �les have seperate

auxilliarly �les (`.aux'), and you can control which �les are processed with the includeonly

command.

In L

a

T

E

Xinfo, the Info program ignores the includeonly command. Both include and

input �les are always processed. input �les are always ignored by the latexinfo-multiple-

files-update command, which creates or updates or updates the \node entries in a �le,

whereas, under certain conditions, this command will recognize the structure of include �les.

See section 15.3.3 [latexinfo-multiple-�les-update], page 133 for details

9.1 Input Files

A line of the form \input{�lename} will include the contents of the �le �lename at that point.

A standard technique is to have a top{level �le, used only for making a comprehensive manual,

containing nothing but the beginning, the end, and a series of \input commands. The \input

must occur at the beginning of a line.

A �le that is intended to be processed with \input should not end with \end{document},

since that would terminate L

a

T

E

X processing immediately.

9.2 Include Files

When L

a

T

E

X or an Info formatting command sees an \include command in a L

a

T

E

Xinfo �le, it

processes the contents of the �le named by the command and incorporates them into the dvi

or Info �le being created. Index entries from the included �le are incorporated into the indices

of the output �le.

An included �le should simply be a segment of text that you expect to be included as-is into

the overall or outer L

a

T

E

Xinfo �le; it should not contain the standard beginning and end parts

73

74 CHAPTER 9. INPUT AND INCLUDE FILES

of a L

a

T

E

Xinfo �le. In particular, you should not start an included �le with a `\documentstyle'

command. Likewise, you should not end an included �le with an \end{document} command;

that command will stop L

a

T

E

X processing immediately.

9.2.1 How to Use Include Files

To include another �le within a L

a

T

E

Xinfo �le, write the \include command at the beginning

of a line and follow it on the same line by the name of a �le to be included. For example:

\include{chap47.tex}

Conventionally, an included �le begins with an \node line that is followed by an \chapter

line. Each included �le is one chapter. This makes it easy to use the regular node and menu

creating and updating commands to create the node pointers and menus within the included

�le. However, the simple Emacs node and menu creating and updating commands do not

work with multiple L

a

T

E

Xinfo �les. Thus you cannot use these commands to �ll in the `Next',

`Previous', and `Up' pointers of the \node line that begins the included �le. Also, you cannot

use the regular commands to create a master menu for the whole �le. Either you must insert

the menus and the �rst and last `Next', `Previous', and `Up' pointers by hand, or you must use

the latexinfo-multiple-files-update command that is designed for \include �les. See

section 15.3.3 [latexinfo-multiple-�les-update], page 133

9.2.2 Sample File with \include

If you plan to use the latexinfo-multiple-files-update command, the outer L

a

T

E

Xinfo �le

that lists included �les within it should contain nothing but the beginning and end parts of a

L

a

T

E

Xinfo �le, and a number of \include commands listing the included �les. It should not

even include indices, which should be listed in an included �le of their own.

Moreover, each of the included �les must contain exactly one highest level node (conven-

tionally, an \chapter node or equivalent), and this node must be the �rst node in the included

�le. Furthermore, each of these highest level nodes in each included �le must be at the same

hierarchical level in the �le structure. Usually, each is an \chapter, an \chapter, or an

\unnumbered node. Thus, normally, each included �le contains one, and only one, chapter or

equivalent-level node.

The outer �le should not contain any nodes besides the single `Top' node. The latexinfo-

multiple-files-update command will not process them.

Here is an example of an outer L

a

T

E

Xinfo �le with \include �les within it before running

latexinfo-multiple-files-update, which would insert a main or master menu:

9.2. INCLUDE FILES 75

\documentstyle[12pt,latexinfo]{book}

\pagestyle{headings}

\begin{document}

\bibliographystyle{alpha}

\newindex{fn}

\title{The Manual}

\author{Fred Foobar,\\

Clarke Institute,\\

999 Queen Street,\\

Toronto, Ontario}

\date{\today}

\maketitle

\tableofcontents

\clearpage

\setfilename{themanual.info}

\include{foo.tex}

\include{bar.tex}

\bibliography{references}

\twocolumn

\unnumbered{Function Index}

\printindex{fn}

\end{document}

An included �le, such as `foo.tex', might look like this:

\node First, Second, , Top

\chapter{First Chapter}

Contents of first chapter . . .

The full contents of `index.tex' might be as simple as this:

76 CHAPTER 9. INPUT AND INCLUDE FILES

\unnumbered{Concept Index, , Second, Top}

\printindex{cp}

Chapter 10

De�nition Commands

The \deffn command and the other de�nition commands enable you to describe functions,

variables, macros, commands, user options, special forms and other such constructs in a uniform

format.

These constructs are most often used for documenting Lisp and C programs, and the table

below summarizes the di�erent constucts, their language on usual usage, and their class. We

will order these functions by their usage: untyped languages such as Lisp, typed languages such

as C, or object{oriented langauges such as CLOS.

Command Name Language Class

de�n Lisp general functions

de�un Lisp functions

defspec Lisp special forms

defmac Lisp macros

defvr Lisp general variables

defvar Lisp variables

deftypefn C general typed functions

deftypefun C typed functions

deftypevr C general typed variables

deftypevar C typed variables

defcv CLOS general classes

defvar CLOS classes

de�var CLOS instances

defop CLOS generic functions

defmethod CLOS methods

deftp All data types

defopt All User Options

Table 10.1: The De�nition Commands

In the Info �le, a de�nition causes the category entity|`Function', `Variable', or whatever|

77

78 CHAPTER 10. DEFINITION COMMANDS

to appear at the beginning of the �rst line of the de�nition, followed by the entity's name and

arguments. In the printed manual, the command causes L

a

T

E

X to print the entity's name and

its arguments on the left margin and print the category next to the right margin. In both

output formats, the body of the de�nition is indented.

The name of the entity is entered into the appropriate index: \deffn enters the name into

the index of functions, \defvr enters it into the index of variables, and so on.

As these functions are not always wanted, their de�nitions are contained in the L

a

T

E

Xinfo

style elisp. To make these commands available to L

a

T

E

Xinfo, include the elisp option in the

list of documentstyle options, such as

\documentstyle[latexinfo,elisp]{book}

Note: The Lisp documentation functions in the elisp style are compatible with the Emacs T

E

Xinfo

fuunctions, and are intended to document the GNU Emacs elisp. As such, they are oriented to the

older Maclisp style of programming. See section 18.1.3 [Clisp Style], page 154, for a more modern

approach to a Lisp documentation style, as would be used for Common Lisp.

10.1 Untyped Languages De�nition Commands

10.1.1 The Template for a De�nition

The \deffn command is used for de�nitions of entities that resemble functions. To write a

de�nition using the \deffn command, write the \deffn command at the beginning of a line

and follow it by the category of the entity, the name of the entity itself, and its arguments in

braces. Then write the body of the de�nition on succeeding lines. (You may embed examples

in the body.) Finally, end the de�nition with an \enddeffn command written on a line of its

own. The other de�nition commands follow the same format. The template for a de�nition

looks like this:

\deffn{category}{name}{arguments. . .}

body-of-de�nition

\enddeffn

For example,

\deffn{Command}{forward-word}{count}

This command moves point forward \var{count} words

(or backward if \var{count} is negative). . . .

\enddeffn

produces

Commandforward-word count

This function moves point forward count words (or backward if count

is negative). . . .

10.1. UNTYPED LANGUAGES DEFINITION COMMANDS 79

Some of the de�nition commands are more general than others. The \deffn command, for

example, is the general de�nition command for functions and the like|for entities that may take

arguments. When you use this command, you specify the category to which the entity belongs.

The \deffn command possesses three prede�ned, specialized variations, \defun, \defmac,

and \defspec, that specify the category for you: \Function", \Macro", and \Special Form"

respectively. The \defvr command also is accompanied by several prede�ned, specialized

variations for describing particular kinds of variables.

The template for a specialized de�nition, such as \defun, is similar to the template for a

generalized de�nition, except that you don't have to specify the category:

\defun{name}{arguments. . .}

body-of-de�nition

\enddefun

Thus,

\defun{buffer-end}{flag}

This function returns \code{(point-min)} if \var{flag}

is less than 1, \code{(point-max)} otherwise.

. . .

\enddefun

produces

Functionbuffer-end ag

This function returns (point-min) if ag is less than 1, (point-max) otherwise.

. . .

See section Sample Function De�nition in A Sample Function De�nition, for a more detailed

example of a function de�nition, including the use of \begin{example} inside of the de�nition.

The other specialized commands work like \defun.

10.1.2 Optional and Repeated Parameters

Some entities take optional or repeated parameters, which may be speci�ed by a distinctive

special glyph that uses square brackets and ellipses. For example, a special form often breaks

its argument list into separate arguments in more complicated ways than a straightforward

function.

An argument enclosed within square brackets is optional. Thus, the phrase `[optional-

arg]' means that optional-arg is optional. An argument followed by an ellipsis is optional and

may be repeated more than once. Thus, `repeated-args. . .' stands for zero or more arguments.

Parentheses are used when several arguments are grouped into additional levels of list structure

in Lisp. Here is the \defspec line of an example of an imaginary special form:

Special Formfoobar var [from to [inc]]

body . . .

80 CHAPTER 10. DEFINITION COMMANDS

In this example, the arguments from and to are optional, but must both be present or both

absent. If they are present, inc may optionally be speci�ed as well. In a L

a

T

E

Xinfo source �le,

this \defspec line is written like this:

\defspec{foobar}{ \var{var} [\var{from} \var{to}

[\var{inc}]]}

\var{body} \dots{}

\enddefspec

The function is listed in the Command and Variable Index under `foobar'.

10.1.3 The De�nition Commands

The de�nition commands automatically enter the name of the entity in the appropriate index:

for example, \deffn, \defun, and \defmac enter function names in the index of functions;

\defvr and \defvar enter variable names in the index of variables. Remember to declare the

necessary indices with the \newindex commands (see section 2.4.3 [New Indexes], page 19).

Although the examples that follow mostly illustrate Lisp, the commands can be used for

other programming languages.

10.1.4 Functions

This section describes the commands for describing functions and similar entities.

\de�n{category}{name}{arguments. . .} The \deffn command is the general de�nition

command for functions, interactive commands, that may take arguments. You must choose

a term to describe the category of entity being de�ned; for example, \Function" could be used

if the entity is a function. The \deffn command is written at the beginning of a line and is

followed by the category of entity being described, the name of this particular entity, and its

arguments, if any. Terminate the de�nition with \enddeffn on a line of its own.

For example,

\deffn{Command}{forward-char}{nchars}

Move point forward \var{nchars} characters.

\enddeffn

shows a rather terse de�nition for a \command" named forward-char with one argument,

nchars.

\deffn prints argument names such as nchars in italics or upper case, as if \var had been

used, because we think of these names as metasyntactic variables|they stand for the actual

argument values. Within the text of the description, write an argument name explicitly with

\var to refer to the value of the argument. In the example above, we used `\var{nchars}' in

this way. The template for \deffn is:

10.1. UNTYPED LANGUAGES DEFINITION COMMANDS 81

\deffn{category}{name}{arguments. . .}

body-of-de�nition

\enddeffn

\defun{name}{arguments. . .} The \defun command is the de�nition command for func-

tions. \defun is equivalent to `\deffn{Function} . . .'.

For example,

\defun{set}{symbol new-value}

Change the value of the symbol symbol to new-value.

\enddefun

shows a rather terse de�nition for a function set whose arguments are symbol and new-value.

The argument names on the \defun line automatically appear in italics or upper case as if

they were enclosed in \var. Terminate the de�nition with \enddefun on a line of its own. The

template is:

\defun{function-name}{arguments. . .}

body-of-de�nition

\enddefun

\defun creates an entry in the index of functions.

\defmac{name}{arguments. . .} The \defmac command is the de�nition command for

macros. \defmac is equivalent to `\deffn{Macro}. . .' and works like \defun.

\defspec{name}{arguments. . .} The \defspec command is the de�nition command for spe-

cial forms. \defspec is equivalent to `\deffn{Special Form} . . .' and works like \defun.

10.1.5 Variables

Here are the commands for de�ning variables and similar entities:

\defvr{category}{name} The \defvr command is a general de�nition command for some-

thing like a variable|an entity that records a value. You must choose a term to describe

the category of entity being de�ned; for example, \Variable" could be used if the entity is a

variable. Write the \defvr command at the beginning of a line and follow it by the category

of the entity and the name of the entity. Terminate the de�nition with \enddefvr on a line of

its own. For example:

\defvr{User Option}{fill-column}

This buffer-local variable specifies

the maximum width of filled lines.

. . .

\enddefvr

82 CHAPTER 10. DEFINITION COMMANDS

The template is:

\defvr{category}{name}

body-of-de�nition

\enddefvr

\defvr creates an entry in the index of variables for name.

\defvar{name} The \defvar command is the de�nition command for variables. \defvar is

equivalent to `\defvr{Variable}. . .'. For example,

\defvar{kill-ring}

. . .

\enddefvar

The template is:

\defvar{name}

body-of-de�nition

\enddefvar

\defvar creates an entry in the index of variables for name.

10.2 C Functions

10.2.1 Functions in Typed Languages

The \deftypefn command and its variations are for describing functions in C or any other

language in which you must declare types of variables and functions.

\deftypefn{category}{data-type}{name}{arguments. . .} The \deftypefn command is the

general de�nition command for functions that may take arguments and that are typed. The

\deftypefn command is written at the beginning of a line and is followed the category of

entity being described, the type of the returned value, the name of this particular entity, and

its arguments, if any.

For example,

\deftypefn{Library Function}{int}{foobar}{(int \var{foo}, float \var{bar})}

. . .

\enddeftypefn

produces the following in Info:

-- Library Function: int foobar (int FOO, float BAR)

. . .

10.2. C FUNCTIONS 83

In a printed manual, it produces:

Library Functionint foobar (int foo, float bar)

a \library function" that returns an int

This means that foobar is a \library function" that returns an int, and its arguments are

foo (an int) and bar (a float).

The argument names that you write in \deftypefn are not subject to an implicit \var|

since the actual names of the arguments in \deftypefn are typically scattered among data

type names and keywords, L

a

T

E

Xinfo can't �nd them without help. Instead, you must write

\var explicitly around the argument names. In the example above, the argument names are

`foo' and `bar'.

The template for \deftypefn is:

\deftypefn{category}{data-type}{name}{arguments} . . .

body-of-description

\enddeftypefn

Note that if the category or data type is more than one word then it must be enclosed in braces

to make it a single argument.

If you are describing a procedure in a language that has packages, such as Ada, you might

consider using \deftypefn in a manner somewhat contrary to the convention described in the

preceding paragraphs. For example:

\deftypefn{stacks}{private}{push}

{(\var{s}:in out stack; \var{n}:in integer)}

. . .

\enddeftypefn

In this instance, the procedure is classi�ed as belonging to the package stacks rather than

classi�ed as a `procedure' and its data type is described as private. (The name of the procedure

is push, and its arguments are s and n.)

\deftypefn creates an entry in the index of functions for name.

\deftypefun{data-type}{name}{arguments. . .} The \deftypefun command is the special-

ized de�nition command for functions in typed languages. The command is equivalent to

`\deftypefn{Function}. . .'.

\deftypefun{int}{foobar}

{(int \var{foo}, float \var{bar})}

. . .

\enddeftypefun

produces the following in Info:

84 CHAPTER 10. DEFINITION COMMANDS

-- Function: int foobar (int FOO, float BAR)

. . .

and the following in a printed manual:

Functionint foobar (int foo, float bar)

. . .

The template is:

\deftypefun{type}{name}{arguments. . .}

body-of-description

\enddeftypefun

\deftypefun creates an entry in the index of functions for name.

10.2.2 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typed languages.

(See section 10.2.1 [Typed Functions], page 82.) The general de�nition command \deftypevr

corresponds to \deftypefn and the specialized de�nition command \deftypevar corresponds

to \deftypefun.

\deftypevr{category}{data-type}{name} The \deftypevr command is the general de�-

nition command for something like a variable in a typed language|an entity that records a

value. You must choose a term to describe the category of the entity being de�ned; for example,

\Variable" could be used if the entity is a variable.

The \deftypevr command is written at the beginning of a line and is followed by the

category of the entity being described, the data type, and the name of this particular entity.

For example:

\deftypevr{Global Flag}{int}{enable}

. . .

\enddeftypevr

produces the following in Info:

-- Global Flag: int enable

. . .

and the following in a printed manual:

Global Flagint enable

. . .

10.3. OBJECT-ORIENTED PROGRAMMING 85

The template is:

\deftypevr{category}{data-type}{name}

body-of-description

\enddeftypevr

\deftypevr creates an entry in the index of variables for name.

\deftypevar{data-type}{name} The \deftypevar command is the specialized de�-

nition command for variables in typed languages. \deftypevar is equivalent to

`\deftypevr{Variable}. . .'.

For example,

\deftypevar{int}{foobar}

. . .

\enddeftypevar

produces the following in Info:

-- Variable: int foobar

. . .

and the following in a printed manual:

Variableint foobar

. . .

The template is:

\deftypevar{data-type}{name}

body-of-description

\enddeftypevar

\deftypevar creates an entry in the index of variables for name.

10.3 Object-Oriented Programming

L

a

T

E

Xinfo has commands for formatting descriptions about abstract objects, such as are used

in object-oriented programming. A class is a de�ned type of abstact object. An instance of

a class is a particular object that has the type of the class. An instance variable is a variable

that belongs to the class but for which each instance has its own value.

In a de�nition, if the name of a class is truly a name de�ned in the programming system

for a class, then you should write an \code around it. Otherwise, it is printed in the usual text

font.

86 CHAPTER 10. DEFINITION COMMANDS

\defcv{category}{class}{name} The \defcv command is the general de�nition command

for variables associated with classes in object-oriented programming. The \defcv command is

followed by three arguments: the category of thing being de�ned, the class to which it belongs,

and its name. Thus,

\defcv{Class Option}{Window}{border-pattern}

. . .

\enddefcv

illustrates how you would write the �rst line of a de�nition of the border-pattern class option

of the class Window. The template is:

\defcv{category}{class}{name}

. . .

\enddefcv

\defcv creates an entry in the index of variables.

\de�var{class}{name} The \defivar command is the de�nition command for instance vari-

ables in object-oriented programming. \defivar is equivalent to `\defcv{Instance Variable}

. . .'

The template is:

\defivar{class}{instance-variable-name}

body-of-de�nition

\enddefivar

\defivar creates an entry in the index of variables.

\defop{category}{class}{name}{arguments. . .} The \defop command is the general de�ni-

tion command for entities that may resemble methods in object-oriented programming. These

entities take arguments, as functions do, but are associated with particular classes of ob-

jects. For example, some systems have constructs called wrappers that are associated with

classes as methods are, but that act more like macros than like functions. You could use

\defop{Wrapper} to describe one of these.

Sometimes it is useful to distinguish methods and operations. You can think of an operation

as the speci�cation for a method. Thus, a window system might specify that all window classes

have a method named expose; we would say that this window system de�nes an expose opera-

tion on windows in general. Typically, the operation has a name and also speci�es the pattern

of arguments; all methods that implement the operation must accept the same arguments, since

applications that use the operation do so without knowing which method will implement it.

Often it makes more sense to document operations than methods. For example, window

application developers need to know about the expose operation, but need not be concerned

with whether a given class of windows has its own method to implement this operation. To

describe this operation, you would write:

10.3. OBJECT-ORIENTED PROGRAMMING 87

\defop{Operation}{windows}{expose}{}

The \defop command is written at the beginning of a line and is followed by the overall

name of the category of operation, the name of the class of the operation, the name of the

operation, and its arguments.

The template is:

\defop{category}{class}{name}{arguments. . .}

body-of-de�nition

\enddefop

\defop creates an entry, such as `expose on windows', in the index of functions.

\defmethod{class}{name}{arguments. . .} The \defmethod command is the de�nition com-

mand for methods in object-oriented programming. A method is a kind of function that im-

plements an operation for a particular class of objects and its subclasses.

\defmethod is equivalent to `\defop{Method . . .'}. The command is written at the begin-

ning of a line and is followed by the name of the class of the method, the name of the method,

and its arguments, if any. For example,

\defmethod{bar-class}{bar-method}{argument}

. . .

\enddefmethod

illustrates the de�nition for a method called bar-method of the class bar-class. The method

takes an argument.

The template is:

\defmethod{class}{method-name}{arguments. . .}

body-of-de�nition

\enddefmethod

\defmethod creates an entry, such as `bar-method on bar-class', in the index of functions.

10.3.1 Data Types

Here is the command for data types:

\deftp{category}{name}{attributes. . .} The \deftp command is the generic de�nition com-

mand for data types. The command is written at the beginning of a line and is followed by

the category, by the name of the type (which is a word like int or float, and then by names

of attributes of objects of that type. Thus, you could use this command for describing int or

float, in which case you could use data type as the category. (A data type is a category of

certain objects for purposes of deciding which operations can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of that type has two

slots called the car and the cdr. Here is how you would write the �rst line of a de�nition of

pair.

88 CHAPTER 10. DEFINITION COMMANDS

\deftp{Data type}{pair}{car cdr}

. . .

\enddeftp

The template is:

\deftp{category}{name-of-type}{attributes. . .}

body-of-de�nition

\enddeftp

\deftp creates an entry in the index of data types.

\defopt{name} The \defopt command is the de�nition command for user options. \defopt

is equivalent to `\defvr {User Option} . . .' and works like \defvar.

10.4 A Sample Function De�nition

A function de�nition uses the \defun and \enddefun commands. The name of the function

follows immediately after the \defun command and it is followed by the parameter list.

Functionapply function &rest arguments

apply calls function with arguments, just like funcall but with one dif-

ference: the last of arguments is a list of arguments to give to function,

rather than a single argument. We also say that this list is appended

to the other arguments.

apply returns the result of calling function. As with funcall, function

must either be a Lisp function or a primitive function; special forms

and macros do not make sense in apply.

(setq f 'list)

)

list

(apply f 'x 'y 'z)

error
Wrong type argument: listp, z

(apply '+ 1 2 '(3 4))

)

10

(apply '+ '(1 2 3 4))

)

10

(apply 'append '((a b c) nil (x y z) nil))

)

(a b c x y z)

An interesting example of using apply is found in the description of

mapcar.

10.4. A SAMPLE FUNCTION DEFINITION 89

In the L

a

T

E

Xinfo source �le, this example looks like this:

\defun{apply}{function &rest arguments}

\code{apply} calls \var{function} with \var{arguments}, just like

\code{funcall} but with one difference: the last of \var{arguments} is a

list of arguments to give to \var{function}, rather than a single

argument. We also say that this list is \dfn{appended} to the other

arguments.

\code{apply} returns the result of calling \var{function}. As with

\code{funcall}, \var{function} must either be a Lisp function or a

primitive function; special forms and macros do not make sense in

\code{apply}.

\begin{example}

(setq f 'list)

\result{} list

(apply f 'x 'y 'z)

\error{} Wrong type argument: listp, z

(apply '+ 1 2 '(3 4))

\result{} 10

(apply '+ '(1 2 3 4))

\result{} 10

(apply 'append '((a b c) nil (x y z) nil))

\result{} (a b c x y z)

In this manual, this function is listed in the Command and Variable Index under apply.

Ordinary variables and user options are described using a format like that for functions

except that variables do not take arguments.

90 CHAPTER 10. DEFINITION COMMANDS

Part II

Info

91

Chapter 11

Nodes and Menus

Most L

a

T

E

Xinfo �les are organized hierarchically like books, with chapters, sections, subsections,

and subsubsections. Such a hierarchy is tree-like; the chapters are the major limbs from which

the sections branch out. In a conventional diagram, however, such a hierarchy is drawn with

the \root" at the top and the \leaves" at the bottom|as an upside-down tree. The root node

is called the `Top' node, and `Up' pointers carry you closer to the root.

11.1 Node and Menu Illustration

Here is a copy of the diagram shown earlier that illustrates a L

a

T

E

Xinfo �le with three chapters,

each of which contains two sections.

top

|

| | |

Chapter 1 Chapter 2 Chapter 3

| | |

-------- -------- --------

| | | | | |

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2

In a L

a

T

E

Xinfo �le that has this organization, you would write the beginning of the node

for Chapter 2 like this:

\node Chapter 2, Chapter 3, Chapter 1, top

\comment node-name, next, previous, up

93

94 CHAPTER 11. NODES AND MENUS

To go to Sections 2.1 and 2.2 using Info, you need a menu inside of Chapter 2 that says:

\begin{menu}

* Sect. 2.1:: Description of this section.

* Sect. 2.2::

\end{menu}

You would locate this menu inside Chapter 2, after the beginning of the chapter and before

Section 2.1.

The node for Sect. 2.1 will look like this:

\node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2

\comment node-name, next, previous, up

Usually, an \node command and a chapter structuring command are used in sequence,

along with indexing commands. (The updating commands require this sequence. See section

15.3.1 [Updating Requirements], page 132.) Also, you may want to follow the \node line with

a comment line that reminds you which pointer is which. For example, the beginning of the

node for the chapter on ending a �le looks like this:

\node Ending a File, Structuring, Beginning a File, Top

\comment node-name, next, previous, up

\chapter{Ending a LaTeXinfo File}

\cindex{Ending a LaTeXinfo file}

\cindex{LaTeXinfo file ending}

\cindex{File ending}

The following two sections describe the \node and \begin{menu} commands in detail.

11.2 \node

\node de�nes the beginning of a new node in the Info output �le. (See Info �le `info', node

`Top'.) Write the command at the beginning of a line, followed by four arguments, separated

by commas, that make up the rest of the line. These arguments are the name of the node, and

the names of the `Next', `Previous', and `Up' pointers, in that order. You may insert spaces

before each pointer if you wish. The spaces are ignored.

In L

a

T

E

X, \node is nearly ignored. It generates nothing visible. Its only function is to

identify the name to use for cross references to the chapter or section which follows the \node

command and which makes up the body of the node. (Cross references, such as the one

following this sentence, are made with \xref and its related commands. See section 12 [Cross

References], page 101.)

11.2. \NODE 95

In general, an \node line is followed immediately by a chapter-structuring command such as

\chapter, \section, \subsection, or \subsubsection. (See section Structuring Command

Types in Types of Structuring Command.)

The name of the node identi�es the node. The pointers, which enable you to reach other

nodes, consist of the names of those nodes.

All the node names for a single Info �le must be unique. Duplications confuse the Info

movement commands. This means, for example, that if you end each chapter with a summary,

you must name every summary node di�erently. You may, however, duplicate section titles

(although this practice may confuse a reader).

Try to pick node names that are informative but short. In the Info �le, the �le name, node

name, and pointer names are all inserted on one line, which may run into the right edge of the

window. (This does not cause a problem with Info, but is ugly.)

By convention, node names are capitalized just as they would be for section or chapter

titles.

Caution: Do not use any of the L

a

T

E

Xinfo \-commands in a node name; these

commands confuse Info.

Do not use commas within a node name; a comma terminates the node name.

Pointer names must be the names of nodes de�ned elsewhere. It does not matter whether

pointers are before or after the node that refers to them.

Normally, a node's `Up' pointer should contain the name of the node whose menu mentions

that node. The node's `Next' pointer should contain the name of the node that follows that

node and its `Previous' pointer should contain the name of the node that precedes it in that

menu. When a node's `Up' node is the same as its `Previous' node, both node pointers should

name the same node.

11.2.1 Writing a Node Line

The easiest way to write a node line is to write \node at the beginning of a line and then the

name of the node. You can use update node commands provided by L

a

T

E

Xinfo mode to insert

the names of the pointers; see section 15 [LaTeXinfo Mode], page 127.

Alternatively, you may insert the `Next', `Previous', and `Up' pointers yourself. If you do

this, you may �nd it helpful to use the L

a

T

E

Xinfo mode keyboard command C-c C-c n. This

command inserts `\node' and a comment line listing the names of the pointers in their proper

order. The comment line helps you keep track of which arguments are for which pointers. This

template is especially useful if you are not familiar with L

a

T

E

Xinfo.

If you wish, you can ignore node lines altogether in your �rst draft and then use the

latexinfo-insert-node-lines command to create node lines for you. However, this practice

is not recommended. It is better to name the node itself at the same time you write a section

so you can easily make cross references. A large number of cross references are an especially

important feature of a good Info �le.

96 CHAPTER 11. NODES AND MENUS

After you have inserted a node line, you should immediately write an \-command for the

chapter or section and insert its name. Next (and this is important!), put in several index

entries. Usually, you will �nd at least two and often as many as four or �ve ways of referring

to the node in the index. Use them all. This will make it much easier for people to �nd the

node.

The top node of the �le (which must be named `top' or `Top') should have as its `Up' and

`Previous' nodes the name of a node in another �le, where there is a menu that leads to this �le.

Specify the �le name in parentheses. If the �le is to be installed directly in the Info directory

�le, use `(dir)' as the parent of the `Top' node; this is short for `(dir)top', and speci�es the

`Top' node in the `dir' �le, which contains the main menu for Info. For example, the `Top'

node line of this manual looks like this:

\node Top, Overview, (dir), (dir)

(You may use the L

a

T

E

Xinfo updating commands to insert these `Next' and `(dir)' pointers

automatically.)

See section 14.2 [Installing an Info File], page 121, for more information about installing an

Info �le in the `info' directory.

11.3 Menu Environment

The \begin{menu} command is used to create menus, which contain pointers to subordinate

nodes. In Info, you use menus to go to such nodes. Menus have no e�ect in printed manuals

and do not appear in them.

By convention, a menu is put at the end of a node. This way, it is easy for someone using

Info to �nd the menu, using the M-> (end-of-buffer) command.

A node that has a menu should not contain much text. If you have a lot of text and a

menu, move most of the text into a new subnode|all but a few lines. Otherwise, a reader

with a terminal that displays only a few lines may miss the menu and its associated text. As

a practical matter, you should locate a menu within 20 lines of the beginning of the node.

The short text before a menu may look awkward in a printed manual. To avoid this, you

can write a menu near the beginning of its node and follow the menu by an \node line and an

\section* line within \begin{ifinfo} and \end{ifinfo}. This way, the menu, node line,

and title appear only in the Info �le, not the printed document.

The preceding two paragraphs follow an Info-only menu, node line, and heading, and look

like this:

11.3. MENU ENVIRONMENT 97

\begin{menu}

* Menu Location:: Put a menu in a short node.

* Menu Item:: How to write a menu item.

* Menu Example:: A menu example.

\end{menu}

\node Menu Location

\begin{ifinfo}

\subsection*{Menus Need Short Nodes}

\end{ifinfo}

See the beginning of the \Cross References" chapter in the L

a

T

E

Xinfo source for this docu-

ment for another example this procedure.

11.3.1 Writing a Menu Item

In a menu, every line that begins with a `* ' is a menu item. (Note the space after the asterisk.)

A line that does not start with a `* ' can appear in the menu but is not a menu item, just a

comment.

A menu item has three parts, only the second of which is required:

1. The menu item name.

2. The name of the node.

3. A description of the item.

A menu item looks like this:

* Item name: Node name. Description.

Follow the menu item name with a single colon and follow the node name with tab, comma,

period, or newline.

In Info, a user can select a node with the m (Info-menu) command. The menu item name

is what the user types after the m command.

If the menu item name and the node name are the same, you can write the name immediately

after the asterisk and space at the beginning of the line and follow the name with two colons.

For example, write

* Name::

instead of

* Name: Name.

98 CHAPTER 11. NODES AND MENUS

You should use the node name for the menu item name whenever possible, since it reduces

visual clutter in the menu.

The third part of a menu entry is a short descriptive phrase or sentence. Menu item names

and node names are often short; the description explains to the reader what the node is about.

The description, which is optional, can spread over two or more lines. A useful description

complements the node name rather than repeating it.

11.3.2 A Menu Example

A menu looks like this in L

a

T

E

Xinfo:

\begin{menu}

* Menu item name: Node name. A short description.

* Node name:: This form is preferred.

\end{menu}

This produces:

* menu:

* Menu item name: Node name. A short description.

* Node name:: This form is preferred.

Here is an example as you might see it in a L

a

T

E

Xinfo �le:

\begin{menu}

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

\end{menu}

This produces:

* menu:

Larger Units of Text

* Files:: All about handling files.

* Multiples: Buffers. Multiple buffers; editing

several files at once.

11.4. REFERRING TO OTHER INFO FILES 99

In this example, the menu has two entries. `Files' is both a menu item name and the name

of the node referred to by that item. In the other entry, `Multiples' is the item name, and it

refers to the node named `Buffers'.

Since no �le name is speci�ed with either `Files' or `Buffers', they must be the names of

nodes in the same Info �le. (See section Other Info Files in Referring to Other Info Files.)

The line `Larger Units of Text' is a comment.

11.4 Referring to Other Info Files

You can refer to nodes in other Info �les by writing the �le name in parentheses just before

the node name. In this case, you should use the three-part menu item format, which saves the

reader from having to type the �le name.

If you do not list the node name, but only name the �le, then Info presumes that you are

referring to the `Top' node.

The format looks like this:

\begin{menu}

* �rst-item:(�lename)nodename. description

* second-item:(�lename)second-node. description

\end{menu}

The `dir' top level directory for the Info system has menu entries that take you directly to

the `Top' nodes of each Info document. (See section 14 [Creating and Installing an Info File],

page 119.)

For example,

. . .

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible, self-documenting

text editor.

. . .

To refer directly to the `Outlining' and `Rebinding' nodes in the Emacs Manual, you

would write a menu similar to the following:

\begin{menu}

* Outlining: (emacs)Outline Mode. The major mode for

editing outlines.

* Rebinding: (emacs)Rebinding. How to redefine the

meaning of a key.

\end{menu}

100 CHAPTER 11. NODES AND MENUS

Chapter 12

Making Cross References

Cross references are used to refer the reader to other parts of the same or di�erent L

a

T

E

Xinfo

�les. In L

a

T

E

Xinfo, nodes are the points to which cross references can refer.

Often, but not always, a printed document should be designed so that it can be read

sequentially. People tire of ipping back and forth to �nd information that should be presented

to them as they need it.

However, in any document, some information will be too detailed for the current context,

or incidental to it; use cross references to provide access to such information. Also, an on-line

help system or a reference manual is not like a novel; few read such documents in sequence

from beginning to end. Instead, people look up what they need. For this reason, such creations

should contain many cross references to help readers �nd other information that they may not

have read.

In a printed manual, a cross reference creates a page reference, unless it is to another manual

altogether, in which case it names that manual.

In Info, a cross reference creates an entry that you can follow using the Info `f' command.

(See Info �le `info', node `Help-Adv'.)

The various cross reference commands use nodes to de�ne cross reference locations. This

is evident in Info, in which a cross reference takes you to the speci�ed node. L

a

T

E

X also uses

nodes to de�ne cross reference locations, but the action is less obvious. When L

a

T

E

X generates

a dvi �le, it records nodes' page numbers and uses the page numbers in making references.

Thus, if you are writing a manual that will only be printed, and will not be used on-line, you

must nonetheless write \node lines to name the places to which you make cross references.

12.1 Di�erent Cross Reference Commands

There are several di�erent cross reference commands:

\xref Used to start a sentence in the printed manual saying `See . . .' or an entry in the Info

�le saying `*Note . . .'.

101

102 CHAPTER 12. MAKING CROSS REFERENCES

\nxref Used within or, more often, at the end of a sentence; produces just the reference in the

printed manual without a preceding `See'. (`n' is for `node'.)

\pxref Used within parentheses to make a reference that starts with a lower case `see' within

the printed manual. (`p' is for `parenthesis'.)

\inforef Used to make a reference to an Info �le. manual.

12.2 Parts of a Cross Reference

A cross reference command requires only one argument, which is the name of the node to which

it refers. But a cross reference command may contain up to four additional arguments. By

using these arguments, you can provide a menu item name for Info, a descriptive phrase for the

printed output, the name of a di�erent Info �le, and the name of a di�erent printed manual.

Here is a simple cross reference example:

\xref{Node name}.

which produces

*Note Node name::.

and in L

a

T

E

X, it turns into a sentence of the form

See section nnn [Node name], page ppp.

Here, however, is an example of a full �ve-part cross reference:

\xref{Node name, Item name, Topic, info-file-name,

A Printed Manual}, for details.

which produces

*Note Item name: (info-file-name)Node name, for details.

and

See section Topic of A Printed Manual, for details.

The �ve arguments for a cross reference are:

1. The node name (required). This is the node to which the cross reference takes you. In

a printed document, the location of the node provides the page reference (for references

within the same document).

12.3. \XREF 103

2. The item name for the Info reference, if it is to be di�erent from the node name. It is

usually omitted.

3. A topic description or section name. Often, this is the title of the section. This is used

as the name of the reference in the printed manual. If omitted, the node name is used.

4. The name of the Info �le in which the reference is located, if it is di�erent from the

current �le.

5. The name of another printed manual.

Cross references with one, two, three, four, and �ve arguments are described separately

following the description of \xref.

You can write cross reference commands within a paragraph, but note how Info and L

a

T

E

X

format the output of each of the various commands: write \xref at the beginning of a sentence;

write \pxref only within parentheses, and so on.

12.3 \xref

The \xref command generates a cross reference for the beginning of a sentence. The Info

formatting commands convert it into an Info cross reference, which the Info `f' command can

use to bring you directly to another node. The L

a

T

E

X typesetting commands convert it into a

page reference, or a reference to another book or manual.

Most often, an Info cross reference looks like this:

*Note node-name::.

or like this

*Note item-name: node-name.

In L

a

T

E

X, a cross reference looks like this:

See section section [node-name], page page

or like this

See section section [topic], page page

The \xref command does not generate a period or comma to end the cross reference in

either the Info �le or the printed output. You must write that period or comma yourself;

otherwise, Info will not recognize the end of the reference. (The \pxref command works

di�erently. See section pxref in \pxref.)

104 CHAPTER 12. MAKING CROSS REFERENCES

Please note: A period or comma must follow the closing brace of an \xref. It is

required to terminate the cross reference. This period or comma will appear in the

output, both in the Info �le and in the printed manual.

\xref must refer to an Info node by name. Use \node to de�ne the node (see section 11.2.1

[Writing a Node], page 95).

\xref is followed by several arguments inside braces, separated by commas. Whitespace

before and after these commas is ignored.

A cross reference requires only the name of a node; but it may contain up to four additional

arguments. Each of these variations produces a cross reference that looks somewhat di�erent.

12.3.1 \xref with One Argument

The simplest form of \xref takes one argument, the name of another node in the same Info

�le.

For example,

\xref{Tropical Storms}.

produces

*Note Tropical Storms::.

and

See section nnn [Tropical Storms], page ppp.

(Note that in the preceding example the closing brace is followed by a period.)

You can write a clause after the cross reference, like this:

\xref{Tropical Storms}, for more info.

which produces:

*Note Tropical Storms::, for more info.

See section nnn [Tropical Storms], page ppp, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by the

clause.)

12.3. \XREF 105

12.3.2 \xref with Two Arguments

With two arguments, the second one is used as the name of the Info cross reference, while the

�rst argument is still the node that the cross reference points to:

The template is like this:

\xref node-name, item-name.

For example:

\xref{Electrical Effects, Lightning}.

which produces:

*Note Lightning: Electrical Effects.

and

See section nnn [Electrical E�ects], page ppp.

(Note that in the preceding example the closing brace is followed by a period; and that the

node name is printed, not the item name.)

You can write a clause after the cross reference, like this:

\xref{Electrical Effects, Lightning}, for more info.

produces

*Note Lightning: Electrical Effects, for more info.

and

See section nnn [Electrical E�ects], page ppp, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by the

clause.)

12.3.3 \xref with Three Arguments

A third argument replaces the node name in the L

a

T

E

X output. The third argument should

state the topic discussed by the section being referenced, or be the name of the section. Often,

you will want to use initial upper case letters so it will be easier to read when the reference is

printed. Use a third argument when the node name is unsuitable because of syntax or meaning.

Remember that a comma or period must follow the closing brace of an \xref command to

terminate the cross reference. In the following examples, a clause follows a terminating comma.

The template is like this:

106 CHAPTER 12. MAKING CROSS REFERENCES

\xref node-name, item-name, topic.

For example,

\xref{Electrical Effects, Lightning, Thunder and Lightning}, for details.

which produces

*Note Lightning: Electrical Effects, for details.

and

See section nnn [Thunder and Lightning], page ppp, for details.

If a third argument is given and the second one is empty, then the third argument serves

both. (Note how two commas, side by side, mark the empty second argument.)

\xref{Electrical Effects, , Thunder and Lightning}, for details.

produces

*Note Thunder and Lightning: Electrical Effects, for details.

and

See section nnn [Thunder and Lightning], page ppp, for details.

12.3.4 \xref with Four and Five Arguments

In a cross reference, a fourth argument speci�es the name of another Info �le, di�erent from the

�le in which the reference appears, and a �fth argument speci�es its title as a printed manual.

Remember that a comma or period must follow the closing brace of an \xref command to

terminate the cross reference. In the following examples, a clause follows a terminating comma.

The template is:

\xref{node-name, item-name, topic, info-�le-name, printed-title}.

For example,

\xref{Electrical Effects, Lightning, Thunder and Lightning,

weather, An Introduction to Meteorology}, for details.

which produces

*Note Lightning: (weather)Electrical Effects, for details.

12.3. \XREF 107

The name of the Info �le is enclosed in parentheses and precedes the name of the node.

In a printed manual, the reference looks like this:

See section Thunder and Lightning of An Introduction to Meteorology, for details.

The name of the printed manual is typeset in italics; and the reference lacks a page number

since L

a

T

E

X cannot know to which page a refer refers when the reference is to another manual.

Often, you will leave out the second argument when you use the long version of \xref. In

this case, the third argument, the topic description, will be used as the item name in Info.

The template looks like this:

\xref{node-name, , topic, info-�le-name, printed-title}, for details.

which produces

*Note topic: (info-�le-name)node-name, for details.

and

See section topic of printed-manual-title, for details.

For example:

\xref{Electrical Effects, , Thunder and Lightning,

weather, An Introduction to Meteorology}, for details.

which produces

*Note Thunder and Lightning: (weather)Electrical Effects, for details.

and

See section Thunder and Lightning of An Introduction to Meteorology, for details.

On rare occasions, you may want to refer to another Info �le that is is within a single

printed manual|when multiple L

a

T

E

Xinfo �les are incorporated into the same L

a

T

E

X run but

make separate Info �les. In this case, you need to specify only the fourth argument, and not

the �fth.

108 CHAPTER 12. MAKING CROSS REFERENCES

12.4 Naming a `Top' Node

In a cross reference, you must always name a node. This means that in order to refer to a

whole manual, you must identify the `Top' node by writing it as the �rst argument to the \xref

command. (This is di�erent from the way you write a menu entry. See section Other Info Files

in Referring to Other Info Files.) At the same time, to provide a meaningful section topic or

title in the printed cross reference (instead of the word `Top'), you must write an appropriate

entry for the third argument to the \xref command.

Thus, to make a cross reference to The GNU Make Manual, write:

\xref{Top, , Overview, make, The GNU Make Manual}.

which produces

*Note Overview: (make)Top.

and

See section Overview of The GNU Make Manual.

In this example, `Top' is the name of the node, and `Overview' is the name of the �rst section

of the manual.

12.5 \nxref

\nxref is nearly the same as \xref except that it does not generate a `See' in the printed

output, just the reference itself. This makes it useful as the last part of a sentence.

For example:

For more information, see \nxref{Orogenesis, ,

Mountaing Building}.

produces

For more information, see *Note Mountain

Building: Orogenesis.

and

For more information, see section nnn [Mountain Building]. page ppp.

12.6. \PXREF 109

The \nxref command sometimes leads writers to express themselves in a manner that is

suitable for a printed manual but looks awkward in the Info format. Bear in mind that your

audience will be using both the printed and the Info format.

For example,

Sea surges are described in \nxref{Hurricanes}.

produces

Sea surges are described in section nnn [Hurricanes].

in a printed document, but

Sea surges are described in *Note Hurricanes::.

in Info.

Caution: You must write a period or comma immediately after an \nxref com-

mand with two or more arguments. Otherwise, Info will not �nd the end of the cross

reference entry and attempts to follow the cross reference will fail. As a general

rule, you should write a period or comma after every \nxref command. This looks

best in both the printed and the Info output.

12.6 \pxref

The parenthetical reference command, \pxref, is nearly the same as \xref, but you use it only

inside parentheses and you do not type a comma or period after the command's closing brace.

The command di�ers from \xref in two ways:

1. L

a

T

E

X typesets the reference for the printed manual with a lower case `see' rather than

an upper case `See'.

2. The Info formatting commands automatically end the reference with a closing colon or

period.

Because one type of formatting automatically inserts closing punctuation and the other

does not, you should use \pxref only inside parentheses as part of another sentence. Also, you

yourself should not insert punctuation after the reference, as you do with \xref.

\pxref is designed so that the output looks right and works right between parentheses both

in printed output and in an Info �le. In a printed manual, a closing comma or period should

not follow a cross reference within parentheses; such punctuation is wrong. But in an Info

�le, suitable closing punctuation must follow the cross reference so Info can recognize its end.

\pxref spares you the need to use complicated methods to put a terminator into one form of

the output and not the other.

Don't try to use \pxref as a clause in a sentence. It will look bad in either the Info �le,

the printed output, or both. Use it only as a parenthetical reference.

With one argument, a parenthetical cross reference looks like this:

110 CHAPTER 12. MAKING CROSS REFERENCES

. . . large storms (\pxref{Hurricanes}) may cause flooding

. . .

which produces

. . . large storms (*Note Hurricanes::) may cause flooding . . .

and

. . . large storms (see section nnn [Hurricanes], page ppp) may cause ooding . . .

With two arguments, a parenthetical cross reference has this template:

. . . (\pxref{node-name, item-name}) . . .

which produces

. . . (*Note item-name: node-name.) . . .

and

. . . (see section nnn [node-name], page ppp) . . .

\pxref can be used with up to �ve arguments just like \xref (see section xref in \xref).

12.7 \inforef

\inforef is used for cross references to Info �les for which there are no printed manuals. Even

in a printed manual, \inforef generates a reference directing the user to look in an Info �le.

The command takes either two or three arguments, in the following order:

1. The node name.

2. The item name (optional).

3. The Info �le name.

Separate the arguments with commas, as with \xref. Also, you must terminate the reference

with a comma or period after the `}', as you do with \xref.

The template is:

\inforef{node-name, item-name, info-�le-name},

Thus,

12.7. \INFOREF 111

\inforef{Expert, Advanced Info commands, info},

for more information.

produces

*Note Advanced Info commands: (info)Expert,

for more information.

and

See Info �le `info', node `Expert', for more information.

Similarly,

\inforef{Expert, , info}, for more information.

produces

*Note (info)Expert::, for more information.

and

See Info �le `info', node `Expert', for more information.

The converse of \inforef is \cite, which is used to refer to printed works for which no

Info form exists. See section 8.2 [Citations], page 72.

112 CHAPTER 12. MAKING CROSS REFERENCES

Chapter 13

Creating Indices

Using L

a

T

E

Xinfo, you can generate indices without having to sort and collate entries manually.

In an index, the entries are listed in alphabetical order, together with information on how

to �nd the discussion of each entry. In a printed manual, this information consists of page

numbers. In an Info �le, this information is a menu item leading to the �rst node referenced.

L

a

T

E

Xinfo provides several prede�ned kinds of index: an index for functions, an index for

variables, an index for concepts, and so on. You can combine indices or use them for other

than their canonical purpose. If you wish, you can de�ne your own indices.

13.1 Making Index Entries

When you are making index entries, it is good practice to think of the di�erent ways people may

look for something. Di�erent people do not think of the same words when they look something

up. A helpful index will have items indexed under all the di�erent words that people may use.

For example, someone might think it obvious that the two-letter names for indices should be

listed under \Indices, two-letter names", since the word \Index" is the general concept. But

another reader may remember the speci�c concept of two-letter names and search for the entry

listed as \Two letter names for indices". A good index will have both entries and will help

both kinds of user.

Like typesetting, the construction of an index is a highly skilled, professional art, the

subtleties of which are not appreciated until you have to do it yourself.

See section 2.9.2 [Printing an Index and Generating Menus], page 28, for information about

the commands to put at the beginning and end of the �le, for printing an index, or creating an

index menu in an Info �le.

113

114 CHAPTER 13. CREATING INDICES

L

a

T

E

Xinfo provides six prede�ned indices:

� A concept index listing concepts that are discussed.

� A function index listing functions (such as, entry points of libraries).

� A variables index listing variables (such as, global variables of libraries).

� A keystroke index listing keyboard commands.

� A program index listing names of programs.

� A data type index listing data types (such as, structures de�ned in header �les).

Not every manual needs all of these. This manual has two indices: a concept index and an

\-command index (that is actually the function index but is called a command index in the

chapter heading). Two or more indices can be combined into one using the \synindex or

\syncodeindex commands. See section 13.3 [Combining Indices], page 116.

13.2 De�ning the Entries of an Index

The data to make an index comes from many individual indexing commands scattered through-

out the L

a

T

E

Xinfo source �le. Each command says to add one entry to a particular index; after

processing, it will give the current page number or node name as the reference.An index entry

consists of an indexing command at the beginning of a line followed by the entry in braces. For

example, this section begins with the following �ve entries for the concept index:

\cindex{Defining indexing entries}

\cindex{Index entries}

\cindex{Entries for an index}

\cindex{Specifying index entries}

\cindex{Creating index entries}

Each declared index has its own indexing command|\cindex for the concept index,

\findex for the function index, and so on. An index must be declared at the beginning of

the document with the \newindex command, before the �rst use of the corresponding index

command. See section 13.2.1 [Declaring indices], page 115 for how to use this command.

The usual convention is to capitalize the �rst word of each index entry, unless that word is

the name of a function, variable, or other such entitity that should not be capitalized. Thus, if

you are documenting Emacs Lisp, your concept index entries are usually capitalized, but not

your function index entries. However, if your concept index entries are consistently short (one

or two words each) it may look better for each regular entry to start with a lower case letter.

Which ever convention you adapt, please be consistent!

By default, entries for a concept index are printed in a small roman font and entries for

the other indices are printed in a small \code font. You may change the way part of an entry

13.2. DEFINING THE ENTRIES OF AN INDEX 115

is printed with the usual L

a

T

E

Xinfo commands, such as \file for �le names and \emph for

emphasis (see section 4 [Marking Text], page 35).

The six indexing commands for prede�ned indices are:

\cindex{concept Make an entry in the concept index for concept.

\�ndex{function Make an entry in the function index for function.

\vindex{variable Make an entry in the variable index for variable.

\kindex{key Make an entry in the key index for key.

\pindex{program Make an entry in the program index for program.

\tindex{data} type Make an entry in the data type index for data type.

Caution: Do not use a colon in an index entry. In Info, a colon separates the menu

item name from the node name. An extra colon confuses Info. See section Menu

Item in Writing a Menu Item, for more information about the structure of a menu

entry.

If the same name is indexed on several pages, all the pages are listed in the printed manual's

index. However, only the �rst node referenced will appear in the index of an Info �le. This

means that it is best to write indices in which each entry will refer to only one place in the

L

a

T

E

Xinfo �le.

13.2.1 Declaring Indices

The \newindex command takes a two-letter index name, and makes the index commands for

that index available for use. The \printindex command takes a two-letter index name, reads

the corresponding sorted index �le and formats it appropriately into an index. Normally, six

indices are provided for, and are referred to by their two-letter abbreviations:

cp A concept index listing concepts that are discussed.

pg A program index listing names of programs and leading to the places where those programs

are documented.

fn A function index listing functions (such as, entry points of libraries).

vr A variables index listing variables (such as, external variables of libraries).

tp A data type index listing data types (such as, structures de�ned in header �les).

ky A keystroke index listing keyboard commands.

116 CHAPTER 13. CREATING INDICES

Not every manual needs all of these. This manual has two indices: a concept index and a

command index (that uses the function index but is called a command index in the chapter

heading). Two or more indices can be combined into one using the \synindex command. See

section 13.3 [Combining Indices], page 116.

You are not actually required to use the prede�ned indices for their canonical purposes.

For example, suppose you wish to index some C preprocessor macros. You could put them in

the function index along with actual functions, just by writing \findex commands for them;

then, when you print the \function index" as an unnumbered chapter, you could give it the

title `Function and Macro Index' and all will be consistent for the reader. Or you could put

the macros in with the data types by writing \tindex commands for them, and give that

index a suitable title so the reader will understand. (See section 2.9.2 [Printing an Index and

Generating Menus], page 28.)

13.2.2 Special Index Entries

The concept index has two special index entries to help you make more elaborate concept

indices.

\cpsubindex{topic}{subtopic} de�nes an entry in the concept index, which has a

subtopic. In the Info manual, this line and anything on it is deleted.

\cpindexbold{topic} de�nes an entry in the concept index, which is set in bold type. In

the Info manual, this line and anything on it is deleted.

All other indices have just one special index, the \??indexbold command, which sets its

entry in bold type.

13.3 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and variables,

perhaps because you have few enough of one of them that a separate index for them would

look silly.

You could put functions into the concept index by writing \cindex commands for them

instead of \findex commands, and produce a consistent manual by printing the concept index

with the title `Function and Concept Index' and not printing the `Function Index' at all; but

this is not a robust procedure. It works only if your document is never included in part of

or together with another document that is designed to have a separate function index; if your

document were to be included with such a document, the functions from your document and

those from the other would not end up together. Also, to make your function names appear

in the right font in the concept index, you would have to enclose every one of them between

\code and \end{code}.

What you should do instead when you want functions and concepts in one index is to index

the functions with \findex as they should be, but use the \syncodeindex command to redirect

these \findex commands to the concept index.

The \syncodeindex command takes two arguments: the name of an index to redirect, and

the name of an index to redirect it to:

13.3. COMBINING INDICES 117

\syncodeindex{from}{to}

For this purpose, the indices are given two-letter names:

cp the concept index

vr the variable index

fn the function index

ky the key index

pg the program index

tp the data type index

Write an \syncodeindex command before or shortly after the end of header line at the

beginning of a L

a

T

E

Xinfo �le. For example, to merge a function index with a concept index,

write the following:

\syncodeindex{fn}{cp}

This will cause all entries designated for the function index to go to the concept index instead.

The \syncodeindex command puts all the entries from the redirected index into the \code

font, overriding whatever default font is used by the index to which the entries are redirected.

This way, if you redirect function names from a function index into a concept index, all the

function names are printed the \code font as you would expect.

The \synindex command is nearly the same as the \syncodeindex command, except that

it does not put the redirected index into the \code font, but puts it in the roman font.

See section 2.9.2 [Printing an Index and Generating Menus], page 28, for information about

printing an index at the end of a book or creating an index menu in an Info �le.

118 CHAPTER 13. CREATING INDICES

Chapter 14

Creating and Installing an Info File

14.1 Creating an Info �le

In GNU Emacs, the way to create an Info �le is to visit the �le and invoke

M-x latexinfo-format-buffer

A new bu�er is created and the Info �le text is generated there. "x "s (save-buffer) will save

it under the name speci�ed in the \setfilename command. latexinfo-format-region and

latexinfo-format-buffer are the two Emacs commands that you can also use for formatting.

A L

a

T

E

Xinfo �le must possess an \setfilename line near its beginning, otherwise the formatting

commands will fail.

For information on installing the Info �le in the Info system, see section 14.2 [Installing an

Info File], page 121.

14.1.1 The latexinfo-format Commands

In GNU Emacs in L

a

T

E

Xinfo mode, you can format part or all of a L

a

T

E

Xinfo �le with the

latexinfo-format-region command. This formats the current region and displays the for-

matted text in a temporary bu�er called `*Info Region*'.

Similarly, you can format the whole �le with the latexinfo-format-buffer command.

This command creates a new bu�er and generates the Info �le in it. Typing C-x C-s will

save the Info �le under the name speci�ed by the \setfilename line which must be near the

beginning of the L

a

T

E

Xinfo �le. See section 15.4 [Info Formatting], page 134, for how to use

the commands:

C-c C-e C-r (latexinfo-format-region) Format the current region for Info.

C-c C-e C-b (latexinfo-format-buffer) Format the current bu�er for Info.

The latexinfo-format-region and latexinfo-format-buffer commands provide you

with some error checking; and other functions provide you with further help in �nding for-

matting errors. These procedures are described elsewhere, see section 17 [Catching Formatting

Mistakes], page 145.

119

120 CHAPTER 14. CREATING AND INSTALLING AN INFO FILE

14.1.2 Tag Files and Split Files

If a L

a

T

E

Xinfo �le has more than 30,000 bytes, latexinfo-format-buffer automatically cre-

ates a tag table for its Info �le. With a tag table, Info can jump to new nodes more quickly

than it can otherwise.

In addition, if the L

a

T

E

Xinfo �le contains more than about 70,000 bytes, latexinfo-

format-buffer splits the large Info �le into shorter indirect sub�les of about 50,000 bytes

each. Big �les are split into smaller �les so that Emacs does not have to make a large bu�er to

hold the whole of a large Info �le; instead, Emacs allocates just enough memory for the small,

split o� �le that is needed at the time. This way, Emacs avoids wasting memory when you

run Info. (Before splitting was implemented, Info �les were always kept short and include �les

were designed as a way to create a single, large printed manual out of the smaller Info �les.

See section 9.2 [Include Files], page 73, for more information. Include �les are still used for

very large documents, such as The Emacs Lisp Reference Manual, in which each chapter is a

separate �le.)

When a �le is split, Info itself makes use of a shortened version of the original �le that

contains just the tag table and references to the �les that were split o�. The split o� �les are

called indirect �les.

The split o� �les have names that are created by appending `-1', `-2', `-3' and so on to the

�le names speci�ed by the \setfilename command. The shortened version of the original �le

continues to have the name speci�ed by \setfilename.

At one stage in writing a document, for example, the Info �le called `test-latexinfo'

might have looked like this:

Info file: test-latexinfo, -*-Text-*-

produced by latexinfo-format-buffer

from file: new-manual.tex

^_

Indirect:

test-latexinfo-1: 102

test-latexinfo-2: 50422

test-latexinfo-3: 101300

^_^L

Tag table:

(Indirect)

Node: overview^?104

Node: info file^?1271

Node: printed manual^?4853

Node: conventions^?6855

. . .

Each of the split o�, indirect �les, `test-latexinfo-1', `test-latexinfo-2', and `test-

14.2. INSTALLING AN INFO FILE 121

latexinfo-3', is listed in this �le after the line that says `Indirect:'. The tag table is listed

after the line that says `Tag table:'.

If you are using latexinfo-format-buffer to create Info �les, you may want to run the

Info-validate command. However, you cannot run the M-x Info-validate node-checking

command on indirect �les. For information on how to prevent �les from being split and how

to validate the structure of the nodes, see section 17.5.1 [Using Info-validate], page 149.

14.2 Installing an Info File

Info �les are usually kept in the `. . ./emacs/info' directory. This directory is the values of the

Emacs variable Info-directory.

14.2.1 The `dir' File

For Info to work, the `info' directory must contain a �le that serves as a top level directory

for the Info system. By convention, this �le is called `dir'. The `dir' �le is itself an Info �le.

It contains the top level menu for all the Info �les in the system. The menu looks like this:

* Menu:

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible, self-documenting

text editor.

* LaTeXinfo: (latexinfo). With one source file, make

either a printed manual using

LaTeX or an Info file.

. . .

Each of these menu entries points to the `Top' node of the Info �le that is named in parentheses.

1

Thus, the `Info' entry points to the `Top' node of the `info' �le and the `Emacs' entry points

to the `Top' node of the `emacs' �le.

In each of the Info �les, the `Up' pointer of the `Top' node refers back to the dir �le. For

example, the node line for the `Top' node of the Emacs manual looks like this:

File: emacs Node: Top, Up: (DIR), Next: Distrib

(Note that in this case, the �le name is written in upper case letters|it can be written in either

upper or lower case. Info has a feature that it will change the case of the �le name to lower

case if it cannot �nd the name as written.)

1

The menu entry does not have to specify the `Top' node, since Info goes to the `Top' node if no node name

is mentioned. See section Other Info Files in Nodes in Other Info Files.

122 CHAPTER 14. CREATING AND INSTALLING AN INFO FILE

14.2.2 Listing a New Info File

To add a new Info �le to your system, add the name to the menu in the `dir' �le by editing the

`dir' �le by hand. Also, put the new Info �le in the `. . ./emacs/info' directory. For example,

if you were adding documentation for GDB, you would make the following new entry:

* GDB: (gdb). The source-level C debugger.

The �rst item is the menu item name; it is followed by a colon. The second item is the name

of the Info �le, in parentheses; it is followed by a period. The third part of the entry is the

description of the item.

Conventionally, the name of an Info �le has a `.info' extension. Thus, you might list the

name of the �le like this:

* GDB: (gdb.info). The source-level C debugger.

However, Info will look for a �le with a `.info' extension if it does not �nd the �le under the

name given in the menu. This means that you can write to `gdb.info' in a menu as `gdb', as

shown in the �rst example. This looks better.

14.2.3 Info Files in Other Directories

If an Info �le is not in the `info' directory, there are two ways to specify its location:

� Write the menu's second part as a pathname, or;

� Specify an environment variable in your `.profile' or `.login' initialization �le.

For example, to reach a test �le in the `~bob/manuals' directory, you could add an entry

like this to the menu in the `dir' �le:

* Test: (~bob/manuals/info-test). Bob's own test file.

In this case, the absolute �le name of the `info-test' �le is written as the second item of the

menu entry.

Alternatively, you may set the INFOPATH environment variable in your `.login' or

`.profile' �le. The INFOPATH environment variable will tell Info where to look.

If you use sh or bash for your shell command interpreter, you must set the INFOPATH

environment variable in the `.profile' initialization �le; but if you use csh or tcsh, you

must set the variable in the `.login' initialization �le. The two �les require slightly di�erent

command formats.

� In a `.login' �le, you could set the INFOPATH variable as follows:

setenv INFOPATH .:~bob/manuals:/usr/local/emacs/info

14.2. INSTALLING AN INFO FILE 123

� In a `.profile' �le, you would achieve the same e�ect by writing:

INFOPATH=.:~bob/manuals:/usr/local/emacs/info

export INFOPATH

Either form would cause Info to look �rst in the current directory, indicated by the `.', then in

the `~bob/manuals' directory, and �nally in the `/usr/local/emacs/info' directory (which is

the usual location for the standard Info directory).

124 CHAPTER 14. CREATING AND INSTALLING AN INFO FILE

Part III

Emacs

125

Chapter 15

Using LaTeXinfo Mode

In GNU Emacs, L

a

T

E

Xinfo mode provides commands and features especially designed for work-

ing with L

a

T

E

Xinfo �les. The special L

a

T

E

Xinfo commands are in addition to the usual editing

commands, which are generally the same as the commands of Text mode. There are special

commands to:

� Insert commonly used strings of text.

� Automatically create node lines.

� Show the structure of a L

a

T

E

Xinfo source �le.

� Automatically create or update the `Next',

`Previous', and `Up' pointers of a node.

� Automatically create or update menus.

� Automatically create a master menu.

� Format a part or all of a �le for Info.

� Typeset and print part or all of a �le.

Implementation note: In L

a

T

E

Xinfo mode the paragraph separation variable and syntax table are

rede�ned so that L

a

T

E

Xinfo commands that should be on lines of their own are not inadvertently included

in paragraphs. Thus, the M-q (fill-paragraph) command will re�ll a paragraph but not mix an

indexing command on a line adjacent to it into the paragraph.

In addition, L

a

T

E

Xinfo mode sets the page-delimiter variable to the value of latexinfo-chapter-

level-regexp; by default, this is a regular expression matching the commands for chapters and sections.

With this value for the page delimiter, you can jump from chapter title to chapter title with the C-

x] (forward-page) and C-x [(backward-page) commands and narrow to a chapter with the C-x p

(narrow-to-page) command. (See Info �le `emacs', node `Pages', for details about the page commands.)

You may name a L

a

T

E

Xinfo �le however you wish, but the convention is to end a L

a

T

E

Xinfo

�le name with `.tex'. Emacs switches to L

a

T

E

Xinfo mode for a �le that has `-*-latexinfo-*-'

127

128 CHAPTER 15. USING LATEXINFO MODE

in its �rst line. If ever you are in another mode and wish to switch to L

a

T

E

Xinfo mode, type

M-x latexinfo-mode.

Like all other Emacs features, you can customize or enhance L

a

T

E

Xinfo mode as you wish.

In particular, the keybindings are very easy to change. The keybindings described here are the

default or standard ones.

15.1 Inserting Frequently Used Commands

L

a

T

E

Xinfo mode provides commands to insert various frequently used \-commands into the

bu�er. You can use these commands to save keystrokes.

The insert commands are invoked by typing C-c twice and then the �rst letter of the \-

command. In the following description, we will list the key sequence, and then the name of the

L

a

T

E

Xinfo function that is invoked.

C-c C-c c (latexinfo-insert-code) Insert \code{} and put the cursor between the braces.

C-c C-c d (latexinfo-insert-dfn) Insert \dfn{} and put the cursor between the braces.

C-c C-c e (latexinfo-insert-end) Insert \end.

C-c C-c i (latexinfo-insert-item) Insert \item and put the cursor at the beginning of the

next line.

C-c C-c k (latexinfo-insert-kbd) Insert \kbd{} and put the cursor between the braces.

C-c C-c n (latexinfo-insert-node) Insert \node and a comment line listing the sequence

for the `Next', `Previous', and `Up' nodes. Leave cursor after the \node.

C-c C-c o (latexinfo-insert-noindent) Insert \noindent and put the cursor in between.

C-c C-c s (latexinfo-insert-samp) Insert \samp{} and put the cursor between the braces.

C-c C-c v (latexinfo-insert-var) Insert \var{} and put the cursor between the braces.

C-c C-c x (latexinfo-insert-example) Insert \begin{example} \end{example} and put

the cursor at the beginning of the next line.

C-c C-c { (latexinfo-insert-braces) Insert {} and put the cursor between the braces.

C-c C-c } (up-list) Move from between a set of braces forward past the closing brace.

Remark: This set of insert commands was created after analyzing the frequency with which di�erent

\-commands are used in the GNU Emacs Manual and the GDB Manual. If you wish to add your own

insert commands, you can bind a keyboard macro to a key, use abbreviations, or extend the code in

`latexinfo-mde.el'.

15.2. SHOWING THE SECTION STRUCTURE OF A FILE 129

15.2 Showing the Section Structure of a File

You can show the section structure of a L

a

T

E

Xinfo �le by using the C-c C-s command

(latexinfo-show-structure). This command shows the section structure of a L

a

T

E

Xinfo

�le by listing the lines that begin with the \-commands for \chapter, \section, and the like.

The command constructs what amounts to a table of contents. These lines are displayed in

another bu�er called the `*Occur*' bu�er. In that bu�er, you can position the cursor over one

of the lines and use the C-c C-c command (occur-mode-goto-occurrence), to jump to the

corresponding spot in the L

a

T

E

Xinfo �le.

C-c C-s (latexinfo-show-structure) Show the \chapter, \section, and such lines of a

L

a

T

E

Xinfo �le.

C-c C-c (occur-mode-goto-occurrence) Go to the line in the L

a

T

E

Xinfo �le corresponding

to the line under the cursor in the `*Occur*' bu�er.

If you call latexinfo-show-structure with a pre�x argument by typing C-u C-c C-s,

it will list not only those lines with the \-commands for \chapter, \section, and the like,

but also the \node lines. You can use latexinfo-show-structure with a pre�x argument to

inspect whether the `Next', `Previous', and `Up' pointers of a node line are correct.

Often, when you are working on a manual, you will be interested only in the structure of the

current chapter. In this case, you can mark o� the region of the bu�er that you are interested

in with the C-x n (narrow-to-region) command and latexinfo-show-structure will work

on only that region. To see the whole bu�er again, use C-x w (widen). (See Info �le `emacs',

node `Narrowing', for more information about the narrowing commands.)

In addition to providing the latexinfo-show-structure command, L

a

T

E

Xinfo mode sets

the value of the page delimiter variable to match the chapter-level \-commands. This enables

you to use the C-x] (forward-page) and C-x [(backward-page) commands to move forward

and backward by chapter, and to use the C-x p (narrow-to-page) command to narrow to a

chapter. See Info �le `emacs', node `Pages', for more information about the page commands.

See section 17.3 [Using latexinfo-show-structure], page 147, for how to detect formatting

errors using this command.

15.3 Updating Nodes and Menus

L

a

T

E

Xinfo mode provides commands for automatically creating or updating menus and node

pointers. The commands are called \update" commands because their most frequent use is for

updating a L

a

T

E

Xinfo �le after you have worked on it.

You can use the updating commands

� to insert or update the `Next', `Previous', and `Up' pointers of a node,

� to insert or update the menu for a section, and

130 CHAPTER 15. USING LATEXINFO MODE

� to create a master menu for a L

a

T

E

Xinfo source �le.

You can also use the commands to update all the nodes and menus in a region or in a whole

L

a

T

E

Xinfo �le.

L

a

T

E

Xinfo mode has �ve updating commands that are used most often: two are for updating

the node pointers or menu of a single node (or a region), two are for updating every node pointer

and menu in a �le, and one, the latexinfo-master-menu command, is for creating a master

menu for a complete �le, and optionally, for updating every node and menu in the whole

L

a

T

E

Xinfo �le.

The latexinfo-master-menu command is the primary command:

C-c C-u m (latexinfo-master-menu) Create or update a master menu that includes all the

other menus (incorporating the descriptions from pre-existing menus, if any).

With an argument (pre�x argument, if interactive), �rst create or update all the nodes

and all the regular menus in the bu�er before constructing the master menu. (See section

The Top Node in The Top Node and Master Menu, for more about a master menu.) For

latexinfo-master-menu to work, the L

a

T

E

Xinfo �le must have a node called `Top'.

After extensively editing a L

a

T

E

Xinfo �le, it is common to type C-u C-c C-u m or

C-u M-x latexinfo-master-menu to update all the nodes and menus completely

and all at once.

The other major updating commands do smaller jobs and are designed for the person who

updates nodes and menus as he or she writes a L

a

T

E

Xinfo �le. These commands are:

C-c C-u C-n (latexinfo-update-node) Insert the `Next', `Previous', and `Up' pointers for

the node point is within (i.e., for the \node line preceding point). If the \node line has

pre-existing `Next', `Previous', or `Up' pointers in it, the old pointers are removed and

new ones inserted. With an argument (pre�x argument, if interactive), this command

updates all \node lines in the region (which is the text between point and mark).

C-c C-u C-m (latexinfo-make-menu) Create or update the menu in the node that point

is within. With an argument (pre�x argument, if interactive), the command makes or

updates menus for the nodes within or part of the region.

Whenever latexinfo-make-menu updates an existing menu, the descriptions from that

menu are incorporated into the new menu. This is done by copying descriptions from

the existing menu to the entries in the new menu that have the same node names. If the

node names are di�erent, the descriptions are not copied to the new menu.

Menu entries that refer to other Info �les are removed since they do not refer to nodes

within the current bu�er. This is a de�ciency.

C-c C-u C-e (latexinfo-every-node-update) Insert or update the `Next', `Previous', and

`Up' pointers for every node in the bu�er .

15.3. UPDATING NODES AND MENUS 131

C-c C-u C-a (latexinfo-all-menus-update) Create or update all the menus in the bu�er.

With an argument (pre�x argument, if interactive), �rst insert or update all the node

pointers before working on the menus.

If a master menu exists, the latexinfo-all-menus-update command updates it; but the

command does not create a new master menu if none already exists. (Use the latexinfo-

master-menu command for that.)

Implementation note: The latexinfo-column-for-description variable speci�es the column to

which menu descriptions are indented. By default, the value is 32 although it is often useful to reduce

it to as low as 24. You can set the variable with the M-x edit-options command (See Info �le `emacs',

node `Edit Options'), or with the M-x set-variable command (See Info �le `emacs', node `Examining').

Also, the latexinfo-indent-menu-description command may be used to indent existing

menus to a speci�ed column.Finally, if you wish, you can use the latexinfo-insert-node-

lines command to insert missing \node lines into a �le. (See section 15.3.2 [Other Updating

Commands], page 132, for more information.)

132 CHAPTER 15. USING LATEXINFO MODE

15.3.1 Updating Requirements

To use the updating commands, you must organize the L

a

T

E

Xinfo �le hierarchically with chap-

ters, sections, subsections, and the like. Each \node line, with the exception of the line for

the `Top' node, must be followed by a line with a structuring command such as \chapter,

\section, or \unnumberedsubsec. Each \node line/structuring-command line combination

must look either like this:

\node Comments, Minimum, Conventions, Overview

\comment node-name, next, previous, up

\section{Comments}

or like this (without the \comment line):

\node Comments, Minimum, Conventions, Overview

\section{Comments}

(In this example, `Comments' is the name of both the node and the section. The next node

is called `Minimum' and the previous node is called `Conventions'. The `Comments' section is

within the `Overview' node, which is speci�ed by the `Up' pointer.)

If a �le has a `Top' node, it must be called `top' or `Top' and be the �rst node in the �le.

15.3.2 Other Updating Commands

In addition to the �ve major updating commands, L

a

T

E

Xinfo mode possesses several less fre-

quently used updating commands.

C-c C-u C-i (latexinfo-insert-node-lines) Insert \node before the \chapter, \section,

and other sectioning commands wherever it is missing throughout a region in a L

a

T

E

Xinfo

�le. With an argument (pre�x argument, if interactive), the latexinfo-insert-node-

lines command not only inserts \node lines but also inserts the chapter or section titles

as the names of the corresponding nodes; and it inserts their titles for node names in

pre-existing \node lines that lack names. Since node names should be more concise than

section or chapter titles, node names so inserted should be edited manually. Also, section

titles cannot contain commas if this command is used, or else only the title yp to the �rst

comma will be used.

C-c C-u C-f (latexinfo-multiple-�les-update) Update nodes and menus in a document

built from several separate �les. With a pre�x argument if called interactively (a non-

nil `make-master-menu' argument, if called non-interactively), create and insert a master

menu in the outer �le. With a numeric pre�x argument if called interactively (a non-

nil `update-everything' argument if called non-interactively), �rst update all the menus

15.3. UPDATING NODES AND MENUS 133

and all the `Next', `Previous', and `Up' pointers of all the included �les before creating

and inserting a master menu in the outer �le. The latexinfo-multiple-files-update

command is described in the section on \include �les. See section 9.2 [Include Files],

page 73.

C-c C-u C-d (latexinfo-indent-menu-description) Indent every description in the menu

following point to the speci�ed column. You can use this command to give your-

self more space for descriptions. With an argument (pre�x argument, if interactive),

the latexinfo-indent-menu-description command indents every description in every

menu in the region. However, this command does not indent the second and subsequent

lines of a multi-line description.

C-c C-u C-s (latexinfo-sequential-node-update) Insert the names of the nodes imme-

diately following and preceding the current node as the `Next' or `Previous' pointers

regardless of those nodes' hierarchical level. This means that the `Next' node of a subsec-

tion may well be the next chapter. Sequentially ordered nodes are useful for documents

that you read through sequentially. (However, in Info, the g* RET command lets you look

through the �le sequentially, so sequentially ordered nodes are not strictly necessary.)

With an argument (pre�x argument, if interactive), the latexinfo-sequential-node-

update command sequentially updates all the nodes in the region.

15.3.3 latexinfo-multiple-files-update

The latexinfo-multiple-files-update command creates or updates `Next', `Previous', and

`Up' pointers of included �les as well as those in the outer or over all L

a

T

E

Xinfo �le, and it

creates or updates a main menu in the outer �le. See section 9.2 [Include Files], page 73.

Depending whether you call it with optional arguments, it updates only the pointers in the

�rst \node line of the included �les or all of them.

C-u C-c C-u C-f (latexinfo-multiple-�les-update) Called without any arguments, will:

� Create or update the `Next', `Previous', and `Up' pointers of the �rst \node line in

each �le included in an outer or overall L

a

T

E

Xinfo �le.

� Create or update the `Top' level node pointers of the outer or overall �le.

� Create or update a main menu in the outer �le.

C-u C-c C-u C-f (latexinfo-multiple-�les-update) Called with a pre�x argument (a non-

nil make-master-menu argument, if called from a program), create and insert a master

menu in the outer �le in addition to creating or updating pointers in the �rst \node line

in each included �le and creating or updating the `Top' level node pointers of the outer

�le. The master menu is made from all the menus in all the included �les.

C-u 8 C-c C-u C-f (latexinfo-multiple-�les-update) Called with a numeric pre�x argu-

ment (a non-nil update-everything argument, if called from a program):

134 CHAPTER 15. USING LATEXINFO MODE

� Create or update the `Top' level node pointers of the outer or overall �le.

� Create or update all the `Next', `Previous', and `Up' pointers of all the included

�les.

� Create or update all the menus of all the included �les.

� And then create a master menu in the outer �le. This is similar to invoking

latexinfo-master-menu with an argument when you are working with just one

�le.

Note the use of the pre�x argument in interactive use: with a regular pre�x argument, just C-

u, the latexinfo-multiple-files-update command inserts a master menu; with a numeric

pre�x argument, such as C-u 8, the command updates every pointer and menu in all the �les

and then inserts a master menu.

15.4 Formatting for Info

L

a

T

E

Xinfo mode provides several commands for formatting part or all of a L

a

T

E

Xinfo �le for

Info. Often, when you are writing a document, you want to format only part of a �le|that is,

a region. You can use the latexinfo-format-region command to format a region.

C-c C-e C-r (latexinfo-format-region) Format the current region for Info.

You can use the latexinfo-format-buffer command to format a whole bu�er:

C-c C-e C-b (latexinfo-format-bu�er) Format the current bu�er for Info.

After writing a L

a

T

E

Xinfo �le, you can type C-u C-c C-u m or C-u M-x latexinfo-

master-menu to update all the nodes and menus and then type C-c C-u b or M-x

latexinfo-format-buffer to create an Info �le.

For the Info formatting commands to work, the �le must include a line that has

\setfilename in its header. See section 14 [Creating and Installing an Info File], page 119, for

details about Info formatting.

15.5. FORMATTING AND PRINTING 135

15.5 Formatting and Printing

Typesetting and printing a L

a

T

E

Xinfo �le is a multi-step process in which you �rst create a �le

for printing (called a dvi �le), and then you print the �le. Optionally, also, you may create

indices.

Often, when you are writing a document, you want to typeset and print only part of a �le,

to see what it will look like. You can use the latexinfo-latex-region and related commands

for this purpose. Use the latexinfo-latex-buffer command to format all of a bu�er.

C-c C-t C-r (latexinfo-latex-region) Run L

a

T

E

X on the region.

C-c C-t C-b (latexinfo-latex-bu�er) Run L

a

T

E

X on the bu�er.

C-c C-t C-i (latexinfo-latexindex) Sort the indices of a L

a

T

E

Xinfo �le formatted with

latexinfo-latex-region or latexinfo-latex-buffer. You must run the latex com-

mand a second time after sorting the raw index �les.

C-c C-t C-p (latexinfo-latex-print) Print the �le (or the part of the �le) previously for-

matted with latexinfo-latex-buffer or latexinfo-latex-region.

For latexinfo-latex-region or latexinfo-latex-buffer to work, the �le must start with a

`\documentstyle' line and must include an \setfilename command as an end of header line.

The �le must end with \end{document} on a line by itself.

See section 16 [Printing Hardcopy], page 139, for a description of the other L

a

T

E

X related

commands, such as latexinfo-latexindex and latex-show-print-queue.

136 CHAPTER 15. USING LATEXINFO MODE

15.6 LaTeXinfo Mode Summary

In L

a

T

E

Xinfo mode, each set of commands has default keybindings that begin with the same

keys. All the commands that are custom-created for L

a

T

E

Xinfo mode begin with C-c. The keys

that follow are arranged mnemonically.

Insert Commands The insert commands begin with C-c twice and then the �rst letter of

the \-command to be inserted.

C-c C-c c Insert ` \code'.

C-c C-c d Insert ` \dfn'.

C-c C-c e Insert ` \end{}'.

C-c C-c i Insert ` \item'.

C-c C-c n Insert ` \node'.

C-c C-c s Insert ` \samp'.

C-c C-c v Insert ` \var'.

C-c C-c { Insert braces.

C-c C-c } Move out of enclosing braces.

Show Structure latexinfo-show-structure is often used within a narrowed region.

C-c C-s List all the headings.

The Master Update Command The latexinfo-master-menu command creates a master

menu; and can be used to update every node and menu in a �le as well.

C-c C-u m Create or update a master menu.

C-u C-c C-u m First create or update all nodes and regular menus.

Update Pointers The update pointer commands begin with C-c C-u:

C-c C-u C-n Update a node.

C-c C-u C-e Update every node in the bu�er.

Update Menus The update menu commands begin with C-c C-u. You may precede a C-c

C-u C-a so as to update both nodes and menus.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all the menus in a bu�er;

C-u C-c C-u C-a �rst update all the nodes.

Format for Info The Info formatting commands begin with C-c C-e:

15.6. LATEXINFO MODE SUMMARY 137

C-c C-e C-r Format the region.

C-c C-e C-b Format the bu�er.

Typeset and Print The typesetting and printing commands begin with C-c C-t:

C-c C-t C-r Run L

a

T

E

X on the region.

C-c C-t C-b Run L

a

T

E

X on the bu�er.

C-c C-t C-i Run latexindex.

C-c C-t C-p Print the dvi �le.

C-c C-t C-q Show the print queue.

C-c C-t C-d Delete a job from the print queue.

C-c C-t C-k Kill the current L

a

T

E

X formatting job.

C-c C-t C-x Quit a currently stopped L

a

T

E

X formatting job.

C-c C-t C-l Recenter the output bu�er.

Other Updating Commands The `other updating commands' begin with C-c C-u

C-c C-u C-i Insert missing node lines using

section titles as node names.

C-c C-u C-f Update a multi-�le document.

C-c C-u C-d Indent descriptions.

C-c C-u C-s Insert node pointers in strict sequence.

138 CHAPTER 15. USING LATEXINFO MODE

Chapter 16

Printing Hardcopy

The typesetting program L

a

T

E

X is used for formatting a L

a

T

E

Xinfo �le. L

a

T

E

X is a very powerful

typesetting program and, if used correctly, does an exceptionally good job.

There are three major stages for printing hardcopy of a L

a

T

E

Xinfo �le. One is for formatting

the �le, the second is for sorting the index, and the third is for printing the formatted document.

When you use the shell commands, you can either work directly in the operating system shell

or work within a shell inside of GNU Emacs.

Instead of shell commands, you can use commands provided by L

a

T

E

Xinfo mode. In addition

to three commands to format a �le, sort the indices, and print the result, L

a

T

E

Xinfo mode o�ers

key bindings for commands to recenter the output bu�er, show the print queue, and delete a

job from the print queue.

16.1 How to Print Using Shell Commands

Format the L

a

T

E

Xinfo �le with the shell command latex followed by the name of the L

a

T

E

Xinfo

�le. This produces a formatted dvi �le as well as several auxiliary �les containing indices, cross

references, etc. The dvi �le (for DeVice Independent �le) can be printed on a wide variety of

printers.

The latex formatting command itself does not sort the indices; it writes an output �le of

unsorted index data. Hence, to generate a printed index, you �rst need a sorted index to work

from. The latexindex command sorts indices.

1

The latex formatting command outputs unsorted index �les under names that obey a

standard convention. These names are the name of your main input �le to the latex formatting

command, with everything after the �rst period thrown away, and the two letter names of

indices added at the end. For example, the raw index output �les for the input �le `foo.tex'

would be `foo.cp', `foo.vr', `foo.fn', `foo.tp', `foo.pg' and `foo.ky'. Those are exactly the

arguments to give to latexindex. Or else, under Unix you can use `??' as \wild-cards" and

give the command in this form:

1

The source �le `latexindex.c' comes as part of the standard L

a

T

E

Xinfo distribution and is usually installed

when L

a

T

E

Xinfo is installed.

139

140 CHAPTER 16. PRINTING HARDCOPY

latexindex foo.??

This command will run latexindex on all the unsorted index �les. (You may execute `la-

texindex foo.??' even if there are similarly named �les with two letter extensions that are not

index �les, such as `foo.el'. The latexindex command reports but otherwise ignores such

�les.) For each �le speci�ed, latexindex generates a sorted index �le whose name is made by

appending `s' to the input �le name. The \printindex command knows to look for a �le of

that name. latexindex does not alter the raw index output �le.

If you have a bibliography, you must also run the BibT

E

X program on the `aux' �le generated

by L

a

T

E

X. For example,

bibtex foo.aux

After you have sorted the indices or formatted the bibliography, you need to rerun the

latex formatting command on the L

a

T

E

Xinfo �le. This regenerates a formatted dvi �le with

up-to-date index entries.

2

To summarize, this is a three step process:

1. Run the latex formatting command on the L

a

T

E

Xinfo �le. This generates the formatted

dvi �le as well as the raw index �les with two letter extensions.

2. Run the shell command latexindex on the raw index �les to sort them. This creates

the corresponding sorted index �les.

3. Run the shell command bibtex on the raw index �les to format the bibliography. This

creates the corresponding `.bbl' �le.

4. Rerun the latex formatting command on the L

a

T

E

Xinfo �le. This regenerates a formatted

dvi �le with the index entries in the correct order. This second run also makes all the

cross references correct as well.

You need not run latexindex each time after you run the latex formatting. If you don't,

on the next run, the latex formatting command will use whatever sorted index �les happen

to exist from the previous use of latexindex. This is usually ok while you are in the early

stages of writing a document.

Rather than type the latex, bibtex and latexindex commands yourself, you can use

the shell script latex2dvi. This shell script is designed to simplify the latex, latexindex,

bibtex, latex sequence by �guring out whether index �les and dvi �les are up-to-date. It runs

latexindex and latex only when necessary. The syntax for latex2dvi is like this (where `%'

is the shell prompt):

2

If you use more than one index and have cross references to an index other than the �rst, you must run

latex three times to get correct output: once to generate raw index data; again (after latexindex) to output

the text of the indices and determine their true page numbers; and a third time to output correct page numbers

in cross references to them. This may also be necessary to update the table of contents if the number of pages

used by the indices or bibliography changed.

16.2. PRINTING FROM AN EMACS SHELL 141

% latex2dvi �lenames. . .

Finally, you can print a dvi �le with the dvi print command. The precise command to use

depends on the system; `lpr -d' is common. The dvi print command may require a �le name

without any extension or with a `.dvi' extension.

The following commands, for example, sort the indices, format, and print the Foo Lisp

Manual (where `%' is the shell prompt):

% latex foo.tex

% latexindex foo.??

% bibtex foo.aux

% latex foo.tex

% lpr -d foo.dvi

(Remember that the shell commands may be di�erent at your site; but these are commonly

used versions.)

16.2 Printing from an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs. To create

a shell within Emacs, type M-x shell. In this shell, you can format and print the document.

See section How to Print in How to Print Using Shell Commands, for details.

You can switch to and from the shell bu�er while latex is running and do other editing.

If you are formatting a long document on a slow machine, this can be very convenient. You

can also use latex2dvi from an Emacs shell. (See section How to Print in How to Print Using

Shell Commands.)

16.3 Formatting and Printing in LaTeXinfo Mode

L

a

T

E

Xinfo mode provides several prede�ned key commands for L

a

T

E

X formatting and printing.

These include commands for sorting indices, looking at the printer queue, killing the formatting

job, and recentering display of the bu�er in which the operations occur.

C-c C-t C-r (latexinfo-latex-region) Run L

a

T

E

X on the current region.

C-c C-t C-b (latexinfo-latex-bu�er) Run L

a

T

E

X on the current bu�er.

C-c C-t C-i (latexinfo-latexindex) Sort the indices of a L

a

T

E

Xinfo �le formatted with

latexinfo-latex-region or latexinfo-latex-buffer.

C-c C-t C-p (latexinfo-latex-print) Print a dvi �le that was made with latexinfo-

latex-region or latexinfo-latex-buffer.

C-c C-t C-q (latexinfo-show-latex-print-queue) Show the print queue.

142 CHAPTER 16. PRINTING HARDCOPY

C-c C-t C-b Run L

a

T

E

X on the bu�er.

C-c C-t C-i Sort the indices.

C-c C-t C-b Rerun L

a

T

E

X to regenerate indices.

C-c C-t C-p Print the dvi �le.

C-c C-t C-q Display the printer queue.

Table 16.1: Formatting a Bu�er Commands

C-c C-t C-d (latexinfo-delete-from-latex-print-queue) Delete a job from the print

queue; you will be prompted for the job number shown by a preceding C-c C-t C-q

command (latexinfo-show-latex-print-queue).

C-c C-t C-k (latexinfo-kill-latex-job) Kill the currently running L

a

T

E

X job started by

latexinfo-latex-region or latexinfo-latex-buffer, or any other process running

in the L

a

T

E

Xinfo shell bu�er.

C-c C-t C-x (latexinfo-quit-latex-job) Quit a L

a

T

E

X formatting job that has stopped be-

cause of an error by sending an X to it. When you do this, L

a

T

E

X preserves a record of

what it did in a `.log' �le.

C-c C-t C-l (latexinfo-recenter-latex-output-bu�er) Redisplay the shell bu�er in which

the L

a

T

E

X printing and formatting commands are run to show its most recent output.

Thus, the usual sequence of commands for formatting a bu�er is as follows (with comments

to the right):

The L

a

T

E

Xinfo mode L

a

T

E

X formatting commands start a subshell in Emacs called

the `*latexinfo-latex-shell*'. The latexinfo-latex-command, latexinfo-latexindex-

command, and latex-dvi-print-command commands are all run in this shell. You can watch

the commands operate in the `*latexinfo-latex-shell*' bu�er, and you can switch to and

from and use the `*latexinfo-latex-shell*' bu�er as you would any other shell bu�er.

The formatting and print commands depend on the values of several variables. The default

values are:

The default values of latexinfo-latex-command and latexinfo-latexindex-command are

set in the `latexnfo-tex.el' �le.

You can change the values of these variables with the M-x edit-options command (See

Info �le `emacs', node `Edit Options'), with the M-x set-variable command (See Info �le

`emacs', node `Examining'), or with your `.emacs' initialization �le (See Info �le `emacs', node

`Init File').

16.4 Using the Local Variables List

Yet another way to apply the L

a

T

E

X formatting command to a L

a

T

E

Xinfo �le is to put that com-

mand in a local variables list at the end of the L

a

T

E

Xinfo �le. You can then specify the L

a

T

E

X

16.5. PREPARING FOR USE OF L

a

T

E

X 143

Variable Default value

latexinfo-latex-command "latex"

latexinfo-latexindex-command "latexindex"

latexinfo-latex-shell-cd-command "cd"

latexinfo-latex-dvi-print-command "lpr -d"

latexinfo-show-latex-queue-command "lpq"

latexinfo-delete-from-print-queue-command "lprm"

latexinfo-start-of-header "\begin{document}"

latexinfo-end-of-header "\set�lename"

latexinfo-latex-trailer "\end{document}"

Table 16.2: Formatting a Document Commands

formatting command as a compile-command and have Emacs run the L

a

T

E

X formatting com-

mand by typing M-x compile. This creates a special shell called the `*compilation buffer*'

in which Emacs runs the compile command. For example, at the end of the `gdb.texinfo' �le,

after the \end{document}, you would put the following:

\c Local Variables:

\c compile-command: "latex2dvi foo.tex"

\c End:

This technique is most often used by programmers who also compile `C' programs this way.

(See Info �le `emacs', node `Compilation'.)

Usually, the �le's �rst line contains an `\c -*-latexinfo-*-' comment that causes Emacs

to switch to L

a

T

E

Xinfo mode when you edit the �le. In addition, the beginning must include a

\begin{document}. After this follows the title page, a copyright page, and permissions, and

a table of contents. Besides an \end{document}, the end of a �le usually includes indices and

the bibliography.

16.5 Preparing for Use of L

a

T

E

X

You must put latexinfo as an option to the documentstyle of every L

a

T

E

Xinfo �le to tell L

a

T

E

X

to use the `latexinfo.sty' �le when it is processing the L

a

T

E

Xinfo source �le. Otherwise L

a

T

E

X

will not know what to do with the commands. See section 2.4.1 [The Documentstyle], page 18.

If L

a

T

E

Xinfo has been installed properly, L

a

T

E

X should �nd the �le automatically. See section

A [Installing LaTeXinfo], page 163, if you have troubles.

16.6 Overfull \Hboxes"

L

a

T

E

X is sometimes unable to typeset a line without extending it into the right margin. This

can occur when L

a

T

E

X comes upon what it interprets as a long word that it cannot hyphenate,

144 CHAPTER 16. PRINTING HARDCOPY

such as an electronic mail network address or a very long title. When this happens, L

a

T

E

X

prints an error message like this:

Overfull \hbox (20.76302pt too wide)

(In L

a

T

E

X, lines are in \horizontal boxes", hence the term, \hbox".)

L

a

T

E

X also provides the line number in the L

a

T

E

Xinfo source �le and the text of the o�ending

line, which is marked at all the places that L

a

T

E

X knows how to hyphenate words.

If the L

a

T

E

Xinfo �le has an overfull hbox, you can rewrite the sentence so the overfull hbox

does not occur, or you can decide to leave it. A small excursion into the right margin often

does not matter and may not even be noticeable.

However, if you do leave an overfull hbox, unless told otherwise, L

a

T

E

X will print a large,

ugly, black rectangle beside the line. This is so you will notice the location of the problem if

you are correcting a draft. To prevent such a mark from marring your �nal printout, put the

following in the beginning of the L

a

T

E

Xinfo �le on a line of its own, before the \maketitle

command:

\finalout

Chapter 17

Catching Formatting Mistakes

Besides mistakes with the content of what ever you are describing, there are two kinds of

mistake you can make with L

a

T

E

Xinfo: you can make mistakes with commands, and you can

make mistakes with the structure of the nodes and chapters. There are two tools for catching

the �rst kind of mistake and two for catching the second.

For �nding problems with commands, your best action is to run

M-x latexinfo-format-region on regions of your �le as you write it. In L

a

T

E

Xinfo mode, the

latexinfo-format-region command is bound to "c "f. In addition, you can run L

a

T

E

X on

the whole �le.

For �nding problems with the structure of nodes and chapters, you can use "c "s

(latexinfo-show-structure) (see section 17.3 [Using latexinfo-show-structure], page 147,)

the related occur command (pxrefUsing occur,) and you can use the M-x Info-validate com-

mand (see section 17.5 [Running Info-Validate], page 149.)

17.1 Catching Errors with Info Formatting

After you have written part of a L

a

T

E

Xinfo �le, you can use the

M-x latexinfo-format-region command to see whether the region formats properly. In La-

TeXinfo Mode, this command is bound to the keyboard command "c "f. If you have made

a mistake with a command, M-x latexinfo-format-region will stop processing at or after

the error and give an error message. To see where in the �le the error occurred, switch to the

`*Info Region*' bu�er; the cursor will be in a position that is after the location of the error.

Also, the text will not be formatted after the place the error occurred (or more precisely, where

it was detected).

The latexinfo-format-region command sometimes provides slightly odd error messages.

For example, if you forget a closing brace,

(\xref{Catching Formatting Mistakes, for more info.)

In this case, latexinfo-format-region detects the missing closing brace but displays a mes-

sage that says `Unbalanced parentheses' rather than `Unbalanced braces'. This is because

145

146 CHAPTER 17. CATCHING FORMATTING MISTAKES

the formatting command looks for mismatches between braces as if they were parentheses.

Sometimes latexinfo-format-region fails to detect mistakes. For example, in the follow-

ing, the closing brace is swapped with the closing parenthesis:

(\xref{Catching Formatting Mistakes), for more info.}

Formatting produces:

(*Note for more info.: Catching Formatting Mistakes)

The only way for you to detect this error is to realize that the reference should have looked

like this:

(*Note Catching Formatting Mistakes::, for more info.)

17.2 Catching Errors with L

a

T

E

X Formatting

You can also catch mistakes when you format a �le with L

a

T

E

X. Usually, you will want to do this

after you have run latexinfo-format-buffer on the same �le, because latexinfo-format-

buffer sometimes displays error messages that make more sense than L

a

T

E

X. (See section 17.1

[Debugging with Info], page 145, for more information.)

For example, L

a

T

E

X was run on a L

a

T

E

Xinfo �le, part of which is shown here:

---------- Buffer: latexinfo.tex ----------

name of the latexinfo file as an extension. The

\samp{??} are `wildcards' that cause the shell to

substitute all the raw index files. (\xref{sorting

indices, for more information about sorting

indices.) \refill

---------- Buffer: latexinfo.tex ----------

(The cross reference lacks a closing brace.) L

a

T

E

X produced the following output, after which

it stopped:

---------- Buffer: *latexinfo-latex-shell* ----------

Runaway argument?

{sorting indices, for more information about sorting

indices.) \refill \ETC.

! Paragraph ended before \xref was complete.

<to be read again>

\par

l.27

?

---------- Buffer: *latexinfo-latex-shell* ----------

17.3. USING LATEXINFO-SHOW-STRUCTURE 147

In this case, L

a

T

E

X produced an accurate and understandable error message:

Paragraph ended before \xref was complete.

(`\par' is an internal L

a

T

E

X command, which is how it represents a new paragraph marker.)

Because the } was forgotten from the \xref command, L

a

T

E

Xnoticed that the paragraph ended

before the command was complete.

Unfortunately, L

a

T

E

X is not always so helpful, and sometimes you have to be truly a Sherlock

Holmes to discover what went wrong. In any case, if you run into a problem like this, you can

do one of two things.

1. You can tell L

a

T

E

X to continue running and to ignore errors as best it can by typing r

RET at the `?' prompt.

This is often the best thing to do. However, beware: the one error may produce a cascade

of additional error messages as its consequences are felt through the rest of the �le. (To

stop L

a

T

E

X when it is producing such an avalanche of error messages, type C-c (or C-c

C-c, if you running a shell inside of Emacs.))

2. You can tell L

a

T

E

X to stop this run by typing x RET at the `?' prompt.

Sometimes L

a

T

E

X will format a �le without producing error messages even though there

is a problem. This usually occurs if a command is not ended but L

a

T

E

X is able to continue

processing anyhow. For example, if you fail to end an itemized list with the \end{itemize}

command, L

a

T

E

X will write a dvi �le that you can print out. The only error message that

L

a

T

E

X will give you is the somewhat mysterious comment that

(\end occurred inside a group at level 1)

However, if you print the dvi �le, you will �nd that the text of the �le that follows the itemized

list is entirely indented as if it were part of the last item in the itemized list. The error message

is the way L

a

T

E

X says that it expected to �nd an \end command somewhere in the �le; but

that it could not determine where it was needed.

17.3 Using latexinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections of a

L

a

T

E

Xinfo �le. This is especially true if you are revising or adding to a L

a

T

E

Xinfo �le that

someone else has written.

In GNU Emacs, in L

a

T

E

Xinfo mode, the latexinfo-show-structure command lists all

the lines that begin with the \-commands that specify the structure: \chapter, \section,

\chapter, and so on. With an argument (pre�x, if interactive), the command also shows the

\node lines. The latexinfo-show-structure command is bound to C-c C-s in L

a

T

E

Xinfo

mode, by default.

The lines are displayed in a bu�er called the `*Occur*' bu�er. For example, when

latexinfo-show-structure was run on an earlier version of this appendix, it produced the

following:

148 CHAPTER 17. CATCHING FORMATTING MISTAKES

Lines matching "^ \ \ \(chapter \ \|sect \ \|sub \ \|unnum \

\)" in buffer latexinfo.tex.

4: \chapter{Catching Formatting Mistakes}

52: \section{Catching Errors with Info Formatting}

222: \section{Catching Errors with \LaTeX{} Formatting}

338: \section{Using \code{latexinfo-show-structure}}

407: \subsection{Using \code{occur}}

444: \section{Finding Badly Referenced Nodes}

513: \subsection{Running \code{Info-validate}}

573: \subsection{Splitting a File Manually}

This says that lines 4, 52, and 222 of `latexinfo.tex' begin with the \chapter, \section,

and \section commands respectively. If you move your cursor into the `*Occur*' window, you

can position the cursor over one of the lines and use the C-c C-c command (occur-mode-goto-

occurrence), to jump to the corresponding spot in the L

a

T

E

Xinfo �le. See Info �le `emacs',

node `Other Repeating Search', for more information about occur-mode-goto-occurrence.

Remark: The �rst line in the `*Occur*' window describes the regular expression speci�ed by latexinfo-

heading-pattern. This regular expression is the pattern that latexinfo-show-structure looks for. See

Info �le `emacs', node `Regexps', for more information.

When you invoke the latexinfo-show-structure command, Emacs will display the structure of

the whole bu�er. If you want to see the structure of just a part of the bu�er, of one chapter, for

example, use the C-x n (narrow-to-region) command to mark the region. (See Info �le `emacs', node

`Narrowing'.) This is how the example used above was generated. To see the whole bu�er again, use

the command C-x w (widen).

If you call latexinfo-show-structure with a pre�x argument by typing C-u C-c C-s, it

will list lines beginning with \node as well as the lines beginning with the \-commands for

\chapter, \section, and the like.

You can remind yourself of the structure of a L

a

T

E

Xinfo �le by looking at the list in the

`*Occur*' window; and if you have mis-named a node or left out a section, you can correct the

mistake.

17.4 Using occur

Sometimes the latexinfo-show-structure command produces too much information. Per-

haps you want to remind yourself of the overall structure of a L

a

T

E

Xinfo �le, and are over-

whelmed by the detailed list produced by latexinfo-show-structure. In this case, you can

use the occur command directly. To do this, type

M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you want to

match. (See Info �le `emacs', node `Regexps'.) The occur command works from the current

17.5. FINDING BADLY REFERENCED NODES 149

location of the cursor in the bu�er to the end of the bu�er. If you want to run occur on the

whole bu�er, place the cursor at the beginning of the bu�er.

For example, to see all the lines that contain the word `\chapter' in them, just type

`\\chapter'. This will produce a list of the chapters. It will also list all the sentences with

`\chapter' in the middle of the line. If you want to see only those lines that start with the word

`\chapter', type `^\\chapter' when prompted by occur. If you want to see all the lines that

end with a word or phrase, end the last word with a `$'; for example, `Catching Formatting

Mistakes$'. This can be helpful when you want to see all the nodes that are part of the same

chapter or section and therefore have the same `Up' pointer.See Info �le `emacs', node `Other

Repeating Search', for more information.

17.5 Finding Badly Referenced Nodes

You can use the Info-validate command to check whether any of the `Next', `Previous', `Up'

or other node pointers fail to point to a node. This command checks that every node pointer

points to an existing node. The Info-validate command works only on Info �les, not on

L

a

T

E

Xinfo �les.

17.5.1 Running Info-validate

To use Info-validate, visit the Info �le you wish to check and type:

M-x Info-validate

(Note that the Info-validate command requires an upper case `I'. You may also need to

create a tag table before running Info-validate. See section 17.5.3 [Tagifying], page 150.)

If your �le is valid, you will receive a message that says \File appears valid". However, if

you have a pointer that does not point to a node, error messages will be displayed in a bu�er

called `*problems in info file*'.

For example, Info-validate was run on a test �le that contained only the �rst node of

this manual. One of the messages said:

In node "Overview", invalid Next: LaTeXinfo Mode

This meant that the node called `Overview' had a `Next' pointer that did not point to anything

(which was true in this case, since the test �le had only one node in it).

Now suppose we add a node named `LaTeXinfo Mode' to our test case but we don't specify

a `Previous' for this node. Then we will get the following error message:

In node "LaTexinfo Mode", should have Previous: Overview

This is because every `Next' pointer should be matched by a `Previous' (in the node where the

`Next' points) which points back. Info-validate also checks that all menu items and cross

references point to actual nodes.

150 CHAPTER 17. CATCHING FORMATTING MISTAKES

Note that Info-validate requires a tag table and does not work with �les that have been

split. (The latexinfo-format-buffer command automatically splits �les larger than 100,000

bytes.) In order to use Info-validate on a large �le, you must run latexinfo-format-buffer

with an argument so that it does not split the Info �le; and you must create a tag table for the

unsplit �le.

17.5.2 Creating an Unsplit File

You can run Info-validate only on a single Info �le that has a tag table. The command will

not work on the indirect sub�les that are generated when a master �le is split. If you have

a large �le (longer than 70,000 bytes or so), you need to run the latexinfo-format-buffer

command in such a way that it does not create indirect sub�les. You will also need to create a

tag table for the Info �le. After you have done this, you can run Info-validate and look for

badly referenced nodes.

The �rst step is to create an unsplit Info �le. To prevent latexinfo-format-buffer from

splitting a L

a

T

E

Xinfo �le into smaller Info �les, give a pre�x to the M-x latexinfo-format-

buffer command:

C-u M-x latexinfo-format-buffer

When you do this, L

a

T

E

Xinfo will not split the �le and will not create a tag table for it.

17.5.3 Tagifying a File

After creating an unsplit Info �le, you must create a tag table for it. Visit the Info �le you

wish to tagify and type:

M-x Info-tagify

(Note the upper case I in Info-tagify.) This creates an Info �le with a tag table that you

can validate.

The third step is to validate the Info �le:

M-x Info-validate

(Note the upper case I in Info-validate.) In brief, the steps are:

C-u M-x latexinfo-format-buffer

M-x Info-tagify

M-x Info-validate

After you have validated the node structure, you can rerun latexinfo-format-buffer in

the normal way so it will construct a tag table and split the �le automatically, or you can make

the tag table and split the �le manually.

17.5. FINDING BADLY REFERENCED NODES 151

17.5.4 Splitting a File Manually

You should split a large �le or else let the latexinfo-format-buffer command do it for you

automatically. (Generally you will let one of the formatting commands do this job for you. See

section 14 [Creating and Installing an Info File], page 119.)

The split o� �les are called the indirect sub�les. Info �les are split to save memory. With

smaller �les, Emacs does not have make such a large bu�er to hold the information. If an Info

�le has more than 30 nodes, you should also make a tag table for it. See section 17.5.1 [Using

Info-validate], page 149, for information about creating a tag table. (Again, tag tables are

usually created automatically by the formatting command; you only need to create a tag table

yourself if you are doing the job manually. Most likely, you will do this for a large, unsplit �le

on which you have run Info-validate.)

Visit the �le you wish to tagify and split and type the two commands:

M-x Info-tagify

M-x Info-split

(Note that the `I' in `Info' is upper case.)

When you use the Info-split command, the bu�er is modi�ed into a (small) Info �le which

lists the indirect sub�les. This �le should be saved in place of the original visited �le. The

indirect sub�les are written in the same directory the original �le is in, with names generated

by appending `-' and a number to the original �le name.

The primary �le still functions as an Info �le, but it contains just the tag table and a

directory of sub�les.

152 CHAPTER 17. CATCHING FORMATTING MISTAKES

Chapter 18

Extending LaTeXinfo

One of the advantages of L

a

T

E

Xinfo is that it is easy to add your own extensions. Adding new

styles in a standard feature of L

a

T

E

X, and this makes it easy to modularize your additions by

plcing them in style �les. There are a large number of publically available style �les that can

be found on the Internet by anonymous ftp, for example on soe.clarkson.edu.

In L

a

T

E

Xinfo, you can similarly make additions to the on-line manual generator by mak-

ing GNU Emacs handlers for your L

a

T

E

X extensions. This is the Emacs counterpart to the

documentstyle options. L

a

T

E

Xinfo looks in a speci�ed directory for GNU Elisp code that cor-

responds to each style �le, by looking for the �le named style-fmt.el. If this �le is found, then

it is loaded into the Emacs session when latexinfo-format-buffer is called (see section 14.1

[Creating an Info �le], page 119). Look in the styles and elisp directories of the L

a

T

E

Xinfo

distribution for examples of this, and in the next section we will show a simple example of how

this works.

18.1 Optional Style Files

L

a

T

E

X provides a number of optional style �les by default. These include latexinfo, 11pt,

12pt, twoside and titlepage. If any of the optional styles is a member of the Emacs variable

latexinfo-known-document-styles, then L

a

T

E

Xinfo does not bother to look for the associated

-fmt �le. By default this list is:

'(latexinfo 11pt 12pt twoside titlepage A4 a4 dina4 psfonts format))

18.1.1 The fvpindex Style

18.1.2 fvpindex Style

Let's say that you wanted to develop a special style for a program, which de�ned the command

\f to be used for specifying functions. This command would put its argument in the function

index, and set the function in the printed manual in a special font. The L

a

T

E

X commands to

do this are quite simple. Firstly, de�ne the \f command, to put its argument in the fn index,

and set its argument in sf font.

153

154 CHAPTER 18. EXTENDING LATEXINFO

\def\f#1{\findex{#1}{\sf #1}}

But what about the Info �le? As it stands, the command \f is not de�ned in L

a

T

E

Xinfo, so when

you formatted the bu�er it would ignore all the \f commands, and their arguments. You need

to introduce the appropriate Emacs lisp code to provide the de�nition of the command that you

have added. For each option in the documentstyle command, L

a

T

E

Xinfo looks to see if the �le

name option-fmt.el exists in the directory de�ned by the Emacs variable latexinfo-formats-

directory. (This variable defaults to the value of the environment variable LATEXINFO, or if

that has not been de�ned, then the current directory). If it does exist, then it loads this �le.

So continuing with our example, if the �le `fvpindex-fmt.el' contained the code

(put 'f 'latexinfo-format 'latexinfo-format-code)

then it would de�ne the \f command to treat its argument the same way that the \code

command does.

After the option-fmt.el has been loaded, L

a

T

E

Xinfo checks to see if a function (of no

arguments) called option-fmt-hook has been de�ned. If so, this function is called. This allows

you to de�ne functions in the option-fmt.el �le that operate on the whole L

a

T

E

Xinfo �le.

You can use the \documentstyle optional called fvpindex that loaded the style

`fvpindex.sty', which contains these de�nitions, and similar de�nitions for \v and \p. In-

clude fvpindex in the list of options to the documentstyle command, after the latexinfo

option. Your L

a

T

E

Xinfo �le would begin with something like:

\documentstyle[12pt,latexinfo,fvpindex]{book}

This provides a convenient way of documenting all functions, variables ans packages of a

program, and having their names automatically entered in the appropriate index, and set in

the font of your choice. Additionally, if you are using fvpindex in conjunction with the elisp

or clisp styles, you will �nd that the \defun commands put their index entries in in index

in bold type, whereas the de�nitions for \f, \v and \p set their entries in normal type. This

allows you to distinguish where the function was de�ned, and where it was simply referenced.

18.1.3 Clisp Style

A more modern approach to the Lisp back defun commands can be found in the style clisp.

The format of the commands is similar to that found in the earlier chapter on De�nition

Commands (see section 10 [De�nition Commands], page 77). This style is still evolving, and

may have new features of changes in the next release of L

a

T

E

Xinfo. The commands of this style

are summarized below.

The principal di�erences between this style and the elisp style are the following:

� An optional parameter can be de�ned after the name of the command, that is used to

indicate the package to which the entity belongs. Insert this optional argument in the

traditional L

a

T

E

X style of using square brackets.

18.1. OPTIONAL STYLE FILES 155

Command Name Language Class

de�n Lisp general functions

de�un Lisp functions

defspec Lisp special forms

defmac Lisp macros

defvr Lisp general variables

defvar Lisp variables

defconst Lisp constants

Table 18.1: The Clisp De�nition Commands

� The function arguments can contain the keywords \&optional, \&rest, and \&key.

� The function arguments can contain the functions \keys{. . .} and \morekeys{. . .} to

properly align the keyword arguments of a function.

� The variable and function index entries are coerced to lower case.

� The commands \true, \false, \empty and \nil are de�ned to print as t, nil, ()and

nil respectively.

\defun{name}[package]{arguments. . .} The \defun command is the de�nition command for

functions. \defun is equivalent to `\deffn{Function} . . .'. The package argument is optional,

and the square brackets are omitted if no package is provided. Within the argument list, the

following keywords are recognized: \&optional, \&rest, and \&key. They print as themselves

in the \code font.

The argument names on the \defun line do not automatically appear in italics in the printed

manual; they should be enclosed in \var. Terminate the de�nition with \enddefun on a line

of its own.

Within the argument list, the following commands are recognized:

\args{} which does nothing.

\keys{. . .} prints the word & key, and sets the tab stop to be align subsequent keys.

\morekeys{. . .} starts a new line and moves to the tab stop set by \keys.

\yetmorekeys{. . .} the same as \morekeys.

Implementation note: The arguments to these functions are set with a L

a

T

E

X minpage environment.

This means that new lines within the argument list will start new lines in the region between the function

name and the function type. Furthermore, the arguments are contained within a tabbing environment,

that allows the use of the \= and \> tab{set and tab commands. This allows one to line up parts of the

argument list, such as keys, and the *keys commands are implemented in terms of these.

156 CHAPTER 18. EXTENDING LATEXINFO

\defmac{name}[package]{arguments. . .} The \defmac command is the de�nition command

for macros. \defmac is equivalent to `\deffn{Macro} . . .'. The package argument is optional,

and the square brackets are omitted if no package is provided. Within the argument list, the

following commands are recognized: \&optional, \&rest, and \&key. They print as themselves

in the \code font. \defspec is similarly de�ned for special forms.

Within the \defun and \defmac argument lists, the following special functions are recog-

nized:

mopt To indicate [optional forms] .

mchoice To indicate [[a choice of forms]] .

mstar To indicate 0 or more foptional formsg

�

.

mplus To indicate 1 or more fformsg

+

.

mgroup To indicate a group of fformsg

+

.

mor To indicate an or between j forms.

mind To indicate an #form.

For more information on this syntax, see [Ste90].

\defvar{name}[package] The \defvar command is the de�nition command for variables.

\defvar is equivalent to `\deffn{Variable}'. \defconst is similarly de�ned for constants.

In addition to these commands, there are the corresponding \head-less" commands:

\deffnx, \deffunx, \defspecx, \defmacx, \defvrx, \defvarx, \defconstx, which are de-

�ned identically to the corresponding commands expect that no extra space is put before the

command heading. You can use these on the second or more of a section that describes a

number of de�nitions.

18.2. LATEXINFO SUPPORT FOR EUROPEAN LANGUAGES 157

18.2 LaTeXinfo support for European languages

L

a

T

E

Xinfo tries to support European languages, but it is an area that is in great ux right

now. `german.sty' is supported as an optional �le, and this will also provide some support for

French.

The following diacrtical marks are supported by default in L

a

T

E

Xinfo, either in the form

\letter or \{letter}

\^ Circumex accent: ĉ.

\` Accute accent: �e.

\' Grave accent: �e.

\" Tr�emat: �o.

In the Info �le, these marks are removed.

But note that by default, the commands \c, \b \i are used for other purposes than their

L

a

T

E

X usage as diacritical marks.

The hyphenation character \- is also supported.

To support Multi-lingual T

E

X, latexinfo.sty looks for the presence of the L

a

T

E

X number

\language, which are assumed to be de�ned as follows:

\newcount\USenglish \global\USenglish=0

\newcount\german \global\german=1

\newcount\austrian \global\austrian=2

\newcount\french \global\french=3

\newcount\english \global\english=4

The presence of \language set to any of \english \english, \french or \german changes

the way the cross-references are printed in L

a

T

E

X. The default is \english.

18.2.1 german.sty

L

a

T

E

Xinfo has support for the �le `german.sty', as of Vers. 2.3, 7 Aug 1990, collected by H.

Partl (TU Wien), using ideas

by W. Appelt, F. Hommes et al. (GMD St.Augustin), T. Hofmann (CIBA-GEIGY Basel),

N. Schwarz (Uni Bochum), J. Schrod (TH Darmstadt), D. Armbruster (Uni Stuttgart), R.

Schoepf (Uni Mainz), and others. It is a document style option for writing german texts with

T

E

X or L

a

T

E

X. It can be called via adding the german option to the \documentstyle command.

Note: User's should resort to their already-installed version of `german.sty' (if any) before using the

one from L

a

T

E

Xinfo, so the existing L

a

T

E

X site documentation won't break. Various copies of this �le

exist from di�erent eras; you may wish to inquire if one is already installed at your site, and look to see

if it is more or less recent than the one distributed with L

a

T

E

Xinfo.

To support Multi-lingual T

E

X, latexinfo.sty looks for the presence of the L

a

T

E

X number

\language, and if it is set to \german, it sets the cross-references in German, and looks to see

158 CHAPTER 18. EXTENDING LATEXINFO

if \mdqon is de�ned. If so, it lets double quotes have their special meaning, and otherwise sets

them as double quotes in typewriter font.

Implementation note: This �le conforms to the standard for Einheitliche deutsche TeX-Befehle as

proposed at the 6th Meeting of German TeX Users in Muenster, October 1987.

18.2.1.1 Commands to be used by the end users

"a for Umlaut-a (like �a), also for all other vowels.

"s for sharp s (like \ss).

"ck for ck to be hyphenated as k-k.

"� for � to be hyphenated as �-f, also for certain other consonants.

"| to separate ligatures.

"- like , but allowing hyphenation in the rest of the word.

"" like "-, but producing no hyphen sign.

"` or \glqq for german left double quotes (similar to ,,)

"' or \grqq for german right double quotes (similar to \)

\glq for german left single quotes (similar to ,)

\grq for german right single quotes (similar to `)

"< or \flqq for french left double quotes (similar to <<)

"> or \frqq for french right double quotes (similar to >>)

\flq for french left single quotes (similar to <)

\frq for french right single quotes (similar to >)

\dq for the original quotes character (")

\setlanguagen to switch to the language speci�ed by n, which should be one of the following

command names:

\austrian \french \english \german \USenglish this changes the date format, captions

and (if \multilingual TeX"is installed) hyphenation.

\originalTeX to restore everything to the original settings of T

E

X and L

a

T

E

X (well, almost

everything).

\germanTeX to re-activate the german settings.

18.2. LATEXINFO SUPPORT FOR EUROPEAN LANGUAGES 159

18.2.1.2 Obsolete Commands

Obsolete commands, provided for compatibility with existing applications:

\3 for sharp s (like "s).

\ck for ck to be hyphenated as k-k (like "ck).

18.2.1.3 Lower Level Commands and Features

\umlautlow rede�nes the Umlaut accent such that the dots come nearer to the letter and that

hyphenation is enabled in the rest of the word.

\umlauthigh restores

�

to its original meaning.

\ss is \lccode'd to enable hyphenation.

\mdqon makes " an active (meta-) character that does the pretty things described above.

\mdqoff restores " to its original meaning.

\dospecials, sanitize are rede�ned to include ".

\dateaustrian, \dategerman, \dateenglish, \dateUSenglish, \datefrench rede�ne

\today to use the respective date format.

\captionsgerman, \captionsenglish, \captionsfrench switch to german, english or french

chapter captions and the like, resp. This will have an e�ect only if the document style

�les use the symbolic names \chaptername etc. instead of the original english words.

\language a count that is set by \setlanguage and can be used by document style declarations

like

\ifnum\language=\english .textengl.\else

\ifnum\language=\german .textgerm.\fi\fi

and/or by M.Ferguson's \Multilingual TêX".

Finally, \germanTeX is switched on.

This �le can be used both with Plain T

E

X and with L

a

T

E

X and other macro packages, and

with the original T

E

X and L

a

T

E

X fonts. Usage of german hyphenation patterns is recommended

to accompany this style �le when writing german texts.

The �le should be read in vertical mode only (usually at the beginning of the document)

to avoid spurious spaces. \undefined must be an unde�ned control sequence.

Multiple calls of this �le (e.g. at the beginning of each sub�le) will do no harm. Only the

�rst call (i.e., if \mdqon is unde�ned) performs all the de�nitions and settings.

160 CHAPTER 18. EXTENDING LATEXINFO

The catcode of @ remains unchanged after processing of this �le. All de�nitions are global,

the switching on of the german options is local.

The commands \mdqon, \mdqoff, \originalTeX, \germanTeX, and \setlanguage are

\fragile" with L

a

T

E

X and should not be used within arguments of macro calls.

In Plain TeX, `\protect' should be \let to `\relax' normally and to something like

`\string' inside the arguments of `\write' or `\message' (see LaTeX.TEX for all the details).

The command \umlautlow may need adaption to font parameters (see comments there for

details).

The commands \flqq, \frqq, \flq, \frq, and \datefrench in their present forms do not

work properly with all font sizes and styles, they still require a better solution.

18.3 Writing Your Own Style Files

<to be written>

Part IV

Appendices

161

Appendix A

Installing LaTeXinfo

A.1 Compiling LaTeXinfo

To compile L

a

T

E

Xinfo:

1. Run the shell script `configure'. You will be asked to provide the following:

BINDIR Where to install the executables.

INFODIR Where to install the info �les.

EMACS the name of your GNU Emacs.

These must exists, and you must be able to write to these directories. For example,

Where would you like to install the binaries?

Please type the full path to your binaries directory:

>/usr5/gnu/bin-sparc

The binaries path was verfied to be [/usr5/gnu/bin-sparc]

Where are the Gnu Info files located?

Please type the full path to your info directory:

>/usr5/gnu/info

The Info directory was verfied to be [/usr5/gnu/info]

Where is your GNU Emacs command:

Please type the name of your GNU Emacs command:

>xemacs

163

164 APPENDIX A. INSTALLING LATEXINFO

2. Then you will be asked:

Would you like to install the elisp and LaTeX files elsewhere,

or leave them here, and set an environment variable to point to here?

Set an environment variable to point to here [y/n]?

If you choose

y `configure' will set the environment variable LATEXINFO in the `.login' to point to

this directory, and you won't need to make install.

n You will be asked about:

ELISPDIR Where to install the compiled Elisp code.

TEXDIR Where to install the style �les.

For example,

Set an environment variable to point to here [y/n]? n

Where would you like to install GNU Emacs code (elisp)?

Please type the full path to your elisp directory:

>/usr5/gnu/lib/emacs/latexinfo

The elisp path was verfied to be [/usr5/gnu/lib/emacs/latexinfo]

Where would you like to install the LaTeX style files?

Please type the full path to your LaTeX style directory:

>/usr5/gnu/lib/tex

The LaTeX style path was verfied to be [/usr5/gnu/lib/tex]

3. Type make. This will make the executables latexindex, info, make the manual, and

compile the `.el' �les. It will also make the �les .emacs and .login.

You may also have to change the de�nitions of your LaTeX commands in the shell script

`manual/latex2dvi' is you are unusual.

A.2. INSTALLING THE LATEXINFO DISTRIBUTION 165

A.2 Installing the LaTeXinfo Distribution

1. If you chose to install the elisp and LaTeX �les elsewhere, type make install to make

the executables, the manual and compile the `.el' �les. This will

make install.C which will move the executables to BINDIR.

make install.manual which will move a copy of the �les `manual/latexinfo.info*' to

the info directory of the GNU Emacs distribution speci�ed by INFODIR, and a copy

of the sample �le to the L

a

T

E

X styles directory speci�ed by TEXDIR.

make install.elisp which will move a copy of the �les `styles/*.elc' to the the GNU

Emacs lisp directory speci�ed by ELISPDIR.

make install.styles which will move a copy of the �les `styles/*.sty' to the the

L

a

T

E

X styles directory speci�ed by TEXDIR.

2. Edit the `dir' �le in INFO directory to include lines like

* LaTeXinfo: (latexinfo2.info). With one source file, make either a

manual using LaTeX or an Info file.

3. Include a copy of the `.emacs' �le in your ~/.emacs.

4. Include a copy of the `.login' �le in your ~/.login.

5. Print a copy of the `manual/latexinfo.dvi' �le and enjoy.

See section 14.2 [Installing an Info File], page 121, for more information on installing an info

�le. See section A.2.1 [Installing the Style Files], page 165, for more information on installing

style �les.

A.2.1 Installing the Style Files

Usually, the `latexinfo.sty' �le is put in the default directory that contains L

a

T

E

X macros,

something like the directory `/usr/local/lib/tex/inputs', which is created when L

a

T

E

X is

installed. In this case, L

a

T

E

X will �nd the �le and you don't have to do anything special.

Alternatively, you can put `latexinfo.sty' in the directory in which each L

a

T

E

Xinfo source

�le is located, and L

a

T

E

X will �nd it there.

However, you may want to specify the location of the \input �le yourself. One way is to

set the TEXINPUTS environment variable in your `.login' or `.profile' �le. The TEXINPUTS

environment variable will tell L

a

T

E

X where to �nd the `latexinfo.sty' �le and any other �le

that you might want L

a

T

E

X to use. This is done by the .login �le supplied with the L

a

T

E

Xinfo

distribution.

Whether you use a `.login' or `.profile' �le depends on whether you use csh, sh, or

bash for your shell command interpreter. When you use csh, it looks to the `.login' �le for

initialization information, and when you use sh or bash, it looks to the `.profile' �le.

In a `.login' �le, you could use the following csh command sequence:

166 APPENDIX A. INSTALLING LATEXINFO

setenv LATEXINFO /usr/me/mylib

Add the format files to the list of directories that LaTeX searches.

if ($?TEXINPUTS) then

setenv TEXINPUTS "$TEXINPUTS"':'"$LATEXINFO"

else

setenv TEXINPUTS "$LATEXINFO"

endif

In a `.profile' �le, you could use the following sh command sequence:

TEXINPUTS=.:/usr/me/mylib:/usr/lib/tex/macros

export TEXINPUTS

This would cause L

a

T

E

X to look for the style �le �rst in the current directory, indicated by the

`.', then in a hypothetical user's `me/mylib' directory, and �nally in the system library.

Appendix B

Converting Files to LaTeXinfo

B.1 Converting LaTeX Files to LaTeXinfo

L

a

T

E

Xinfo �les are essentially a special style of standard L

a

T

E

X �les. To make a standard L

a

T

E

X

�le into a L

a

T

E

Xinfo �le, you must begin it with the lines

\documentstyle[12pt,latexinfo]{book}

\pagestyle{headings}

\begin{document}

\setfilename{latexinfo.info}

See section 1.5 [A Short Sample LaTeXinfo File], page 8, for details of how a L

a

T

E

Xinfo �le

begins. Once you have added these lines, you will have a document that will pass both L

a

T

E

X,

and Info formating program, but it will be a document with any node structure, so it will be

in essence one large node. (See section 11 [Nodes and Menus], page 93 for more information

on nodes.)

This is not very useful for the people who read the document under the info program. To

add nodes and menus to the document, you can do it by hand, or you can use the function

latexinfo-insert-node-lines (see section 15.3.2 [Other Updating Commands], page 132.)

Alternatively, use the l2latexinfo.el �le provided with L

a

T

E

Xinfo, which does this, and makes

a number of other conversions as well. See section B.1.1 [l2latexinfo.el], page 168.

If you want to use L

a

T

E

X commands for which there is no L

a

T

E

Xinfo support of any kind,

you can always wrap them in a tex environment:

\begin{tex}

...

\end{tex}

This ensures that this part will be ignored by the Info processor, and that all special characters

will be processed according to the normal L

a

T

E

X de�nitions.

167

168 APPENDIX B. CONVERTING FILES TO LATEXINFO

The following L

a

T

E

X commands are also supported by the Info formatter, although they

might not do everything in Info that they do in L

a

T

E

X.

\LaTeX

\S

\arrow

\geq

\hfill

\label

\leq

\newblock

\newpage

\onecolumn

\pi

\pm

\protect

\qquad

\quad

\ss

\thebibliography

\thispagestyle

\tie

\twocolumn

\vspace

\vspace*

B.1.1 l2latexinfo.el

With the L

a

T

E

Xinfo distribution is a �le called `l2latexinfo.el', which helps convert a L

a

T

E

X

�le to a L

a

T

E

Xinfo �le. Although it is not a perfectly automatic conversion, it will convert most

of a �le to L

a

T

E

Xinfo. To convert a L

a

T

E

X File into an L

a

T

E

XInfo �le, just visit a L

a

T

E

X�le in

GNU Emacs and invoke

Meta-x latex-to-latexinfo

to convert it to a L

a

T

E

XInfo �le. Then search through the bu�er to see if there are any command

that were not converted.

When you run latex-to-latexinfo, you will be asked

Would you like to do the \input files now, to do it all at once?

If you say yes, all the \input �les will be included, so you can do all of the sub�les at the

same time.

Remember that the characters & ^ % $ # are not special in L

a

T

E

Xinfo. There is no support

for any of the mathematics commands. Braces that are not required for L

a

T

E

Xinfo commands

will appear in the Info �le.

B.2. CONVERTING TEXINFO FILES INTO LATEXINFO FILES 169

B.2 Converting TeXinfo Files into LaTeXinfo Files

Documentation for GNU utilities and libraries is usually written in a format called T

E

Xinfo.

Perhaps the most signi�cant di�erence of L

a

T

E

Xinfo from T

E

Xinfo is that if a L

a

T

E

X command

is found that the Info formatter does not know about, an error is not signalled, and processing

simply continues. This means that as long as you don't mind having the commands ignored in

the Info �le, you can use any L

a

T

E

X command.

B.2.1 Di�erences from TeXinfo

The following T

E

Xinfo commands have been deleted:

@asis Not needed.

@defindex Not needed (how many more indexes do you want??)

@dmn Not needed.

@ftable Not needed.

@itemx Not needed.

@setchapternewpage Use documentstyle type and options instead.

@subtitle You are free to use fonts in \title command.

@summarycontents Controlled by LaTeX parameter \setcounter{tocdepth}

@titlefont Not needed.

The following commands have been replaced by their L

a

T

E

X equivalents:

\appendixsec replaced by \section

\appendixsubsec replaced by \subsection

\appendixsubsubsec replaced by \subsubsection

\bye replaced by \end{document}

\center replaced by \begin{center} .. \end{center}

\chapheading replaced by \chapter*

\contents replaced by \tableofcontents

\group replaced by \begin{same}

\heading replaced by \section*

\headings replaced by \pagestyle

\majorheading replaced by \chapter*

\page replaced by \clearpage

\sc replaced by \scap

\settitle replaced by \title

\heading replaced by \section*

\subheading replaced by \subsection*

\subsubheading replaced by \subsubsection*

\table replaced by \begin{description}

\titlepage replaced by \maketitle

\vskip replaced by \vspace

170 APPENDIX B. CONVERTING FILES TO LATEXINFO

The following commands have been changed to their L

a

T

E

X de�nitions:

\appendix

\author

\center

\chapter

\date

\section

\subsection

\subsubsection

\begin{enumerate}

\begin{flushleft}

\begin{flushright}

\title

\today

The T

E

Xinfo custom headings are supplanted by the L

a

T

E

X commands.

B.2.2 t2latexinfo.el

With the L

a

T

E

Xinfo distribution is a �le called `t2latexinfo.el', which helps convert a T

E

Xinfo

�le to a L

a

T

E

Xinfo �le. Although it is not a perfectly automatic conversion, it will convert most

of a �le to L

a

T

E

Xinfo. To convert a T

E

Xinfo File into an L

a

T

E

XInfo �le, just visit a T

E

Xinfo �le

in GNU Emacs and invoke

Meta-x tex-to-latexinfo

to convert it to a L

a

T

E

XInfo �le. Then search through the bu�er to see if there are any command

that were not converted. These start with the symbol `@'. You may have to �x up the titlepage

to use \author and \title etc, and may choose to move the setfilename command down to

somewhere after the title and copyright pages. You will also have to �x up any places where

you have embedded T

E

X code such as

@tex

\overfullrule=0pt

@end tex

which will be converted into

\begin{tex}

\back overfullrule=0pt

\end{tex}

When you run tex-to-latexinfo, you will be asked

B.3. CONVERTING SCRIBE FILES TO LATEXINFO 171

Would you like to do the @input files now, to do it all at once?

If you say yes, all the @input �les will be included, so you can do all of the sub�les at the

same time. You will also be asked:

Would you like all occurences of `@@' replaced by `@'?

This is normally the case, but if you say no, you will be asked

Would you like all occurences of `@@' replaced by ` \ \'?

You must choose one of these two options. The �rst option is normal for most T

E

Xinfo �les;

the second option is only normally used for converting the T

E

Xinfo manual itself.

B.3 Converting Scribe Files to LaTeXinfo

With the L

a

T

E

Xinfo distribution is a �le called `s2latexinfo.el', which helps convert a Scribe

�le to a L

a

T

E

Xinfo �le. Although it is not a perfectly automatic conversion, it will convert most

of a �le to L

a

T

E

Xinfo. To convert a Scribe �le into a L

a

T

E

XInfo �le, just visit the Scribe �le in

GNU Emacs and invoke

Meta-x scribe-to-latexinfo

to convert it to a L

a

T

E

XInfo �le. Then search through the bu�er to see if there are any

commands that were not converted. These start with the symbol `@'. When you run scribe-

to-latexinfo, you will be asked:

Would you like to do the @include files now, to do it all at once?

If you say yes, all the @include �les will be included, so you can do all of the sub�les at the

same time. You will also be asked:

Implementation note: This program was written to convert the CMU Lisp manuals. It is very heavily

tailored to CMU and Common Lisp. Expect to have to alter this �le to tailor it to your needs.

172 APPENDIX B. CONVERTING FILES TO LATEXINFO

Appendix C

Obtaining L

a

T

E

X

T

E

X is freely redistributable. You can obtain T

E

X for Unix systems from the University of

Washington for a distribution fee. L

a

T

E

X is included with T

E

X

To order a full distribution, send $140.00 for a 1/2-inch 9-track 1600 bpi (tar or cpio) tape

reel, or $165.00 for a 1/4-inch 4-track QIC-24 (tar or cpio) cartridge, to:

Northwest Computing Support Center

DR-10, Thomson Hall 35

University of Washington

Seattle, Washington 98195

Please make checks payable to the University of Washington.

Prepaid orders are preferred but purchase orders are acceptable; however, purchase orders

carry an extra charge of $10.00, to pay for processing.

Overseas sites: please add to the base cost $20.00 for shipment via air parcel post, or $30.00

for shipment via courier.

Please check with the Northwest Computing Support Center at the University of Washing-

ton for current prices and formats:

telephone: (206) 543-6259

email: elisabet@max.u.washington.edu

173

174 APPENDIX C. OBTAINING L

a

T

E

X

Appendix D

Command List

Here is an alphabetical list of the \-commands in L

a

T

E

Xinfo. The alphabetical order ignores

the \begin{} and \end{} of environment commands.

* Force a line break. Do not end a paragraph that uses * with an \refill command. See

section 7.2.1 [Line Breaks], page 65.

\\ Force a line break in the L

a

T

E

X �le. See section 7.2.1 [Line Breaks], page 65.

\. Stands for a period that really does end a sentence. See section 4.3.1.3 [Controlling Spacing],

page 43.

\: Indicate to L

a

T

E

X that an immediately preceding period, question mark, exclamation mark,

or colon does not end a sentence. Prevent L

a

T

E

X from inserting extra whitespace as it

does at the end of a sentence. The command has no e�ect on the Info �le output. See

section 4.3.1.3 [Controlling Spacing], page 43.

\{ Stands for a left-hand brace, `{'. See section Braces Atsigns Periods in Inserting \braces

and periods.

\} Stands for a right-hand brace, `}'. See section Braces Atsigns Periods in Inserting \braces

and periods.

\appendix Begin the appendices. All chapters and sections after this command will be treated

as appendices, and marked with alphabetical chapter numbers.

\author{author} Typeset author according to the current documentstyles. See section 2.5.1

[Titlepage], page 20.

\b{text} Print text in bold font. No e�ect in Info. See section 4.2.3 [Fonts], page 42.

\back Stands for `\'. See section Braces Atsigns Periods in Inserting `\'.

\BibTeX{} Insert the logo BibT

E

X.

175

176 APPENDIX D. COMMAND LIST

\bullet{} Generate a large round dot, or the closest possible thing to one. See section 4.3.3

[Dots Bullets], page 44.

\c comment Begin a comment in Texinfo. The rest of the line does not appear in either the

Info �le or the printed manual. A synonym for \comment. See section Conventions in

General Syntactic Conventions.

\cartouche Highlight an example or quotation by drawing a box with rounded corners around

it. Pair with \end{cartouche}. No e�ect in Info. See section cartouche in Drawing

Cartouches Around Examples.)

\begin{center} Center the text following. See section 5.2.1.1 [Center Environment], page 49.

\chapter{title} Begin a chapter. The chapter title appears in the table of contents of a printed

manual. In Info, the title is underlined with asterisks. See section 3.3 [Chapter], page 33.

\cindex{entry} Add entry to the index of concepts. See section Index Entries in De�ning the

Entries of an Index.

\cite{reference} Refer to a BibT

E

X bibliography item. See section 8.2 [Citations], page 72.

\clearpage Start a new page in a printed manual. No e�ect in Info. See section page in Start

a New Page.

\code{sample-code} Highlight text that is an expression, a syntactically complete token of a

program, or a program name. See section code in \code.

\comment comment Begin a comment in L

a

T

E

Xinfo. The rest of the line does not appear

in either the Info �le or the printed manual, nor does following whitespace. See section

Conventions in General Syntactic Conventions.

\copyright{} Generate a copyright symbol. See section 4.3.4 [LaTeX and copyright], page 45.

\defcv{category}{class}{name} Format a description for a variable associated with a class

in object-oriented programming. Takes three arguments: the category of thing being

de�ned, the class to which it belongs, and its name. See section 10 [De�nition Commands],

page 77.

\de�n{category}{name}{arguments. . .} Format a description for a function, interactive com-

mand, or similar entity that may take arguments. \deffn takes as arguments the category

of entity being described, the name of this particular entity, and its arguments, if any.

See section 10 [De�nition Commands], page 77.

\de�var{class}{instance-variable-name} Format a description for an instance variable in

object-oriented programming. The command is equivalent to `\defcv{Instance Vari-

able} . . .'. See section 10 [De�nition Commands], page 77.

177

\defmac{macro-name}{arguments. . .} Format a description for a macro. The command is

equivalent to `\deffn{Macro}. . .'. See section 10 [De�nition Commands], page 77.

\defmethod{class}{method-name}{arguments. . .} Format a description for a method in

object-oriented programming. The command is equivalent to `\defop{Method} . . .'.

Takes as arguments the name of the class of the method, the name of the method, and

its arguments, if any. See section 10 [De�nition Commands], page 77.

\defop{category}{class}{name}{arguments. . .} Format a description for an operation in

object-oriented programming. \defop takes as arguments the overall name of the cate-

gory of operation, the name of the class of the operation, the name of the operation, and

its arguments, if any. See section 10 [De�nition Commands], page 77.

\defopt{option-name} Format a description for a user option. The command is equivalent to

`\defvr{User Option} . . .'. See section 10 [De�nition Commands], page 77.

\defspec{special-form-name}{arguments}. . . Format a description for a special form. The

command is equivalent to `\deffn{Special Form}. . .'. See section 10 [De�nition Com-

mands], page 77.

\deftp{category}{name-of-type}{attributes. . .} Format a description for a data type. \deftp

takes as arguments the category, the name of the type (which is a word like `int' or `oat'),

and then the names of attributes of objects of that type. See section 10 [De�nition

Commands], page 77.

\deftypefn{classi�cation}{data-type}{name}{arguments. . .} Format a description for a

function or similar entity that may take arguments and that is typed. \deftypefn takes

as arguments the classi�cation of entity being described, the type, the name of the entity,

and its arguments See section 10 [De�nition Commands], page 77.

\deftypefun{data-type}{function-name}{arguments. . .} Format a description for a function

in a typed language. The command is equivalent to `\deftypefn{Function}. . .'. See

section 10 [De�nition Commands], page 77.

\deftypevr{classi�cation}{data-type}{name} Format a description for something like a vari-

able in a typed language|an entity that records a value. Takes as arguments the clas-

si�cation of entity being described, the type, and the name of the entity. See section 10

[De�nition Commands], page 77.

\deftypevar{data-type}{variable-name} Format a description for a variable in a typed lan-

guage. The command is equivalent to `\deftypevr{Variable}. . .'. See section 10 [De�-

nition Commands], page 77.

\defun{function-name}{arguments. . .} Format a description for functions. The command is

equivalent to `\deffn{Function}. . .'. See section 10 [De�nition Commands], page 77.

\defvar{variable-name} Format a description for variables. The command is equivalent to

`\defvr{Variable}. . .'. See section 10 [De�nition Commands], page 77.

178 APPENDIX D. COMMAND LIST

\defvr{category}{name} Format a description for any kind of variable.

\defvr takes as arguments the category of the entity and the name of the entity. See

section 10 [De�nition Commands], page 77.

\begin{description} Begin a description, using \item for each entry. Write each �rst column

entry as \item[entry]. See section 6.3 [Description Environment], page 61.

\dfn{term} Highlight the introductory or de�ning use of a term. See section dfn in \dfn.

\begin{display} Begin a kind of example. Indent text, do not �ll, do not select a new font.

Pair with \end{display}. See section display in \begin{display}.

\dmn{dimension} Format a dimension. Causes L

a

T

E

X to insert a narrow space before dimen-

sion. Has no e�ect in Info. Used for writing a number followed by an abbreviation of

a dimension name, such as `12pt', written as `12\dmn{pt}', with no space between the

number and the \dmn command. See section dmn in \dmn.

\end{document} Terminate L

a

T

E

X processing on the �le. L

a

T

E

X does not see any of the

contents of the �le following the \end{document} command. See section 2.9 [Ending a

File], page 26.

\dots{} Insert an ellipsis: `. . .'. See section 4.3.3 [Dots Bullets], page 44.

\emph{text} Highlight text. See section Emphasis in Emphasizing Text.

\begin{enumerate} Begin a numbered list, using \item for each entry. Pair with

\end{enumerate}. See section enumerate in \begin{enumerate}.

\equiv{} Indicate the exact equivalence of two forms to the reader with a special glyph: `

�

'.

See section 5.7.5 [Equivalence], page 56.

\error{} Indicate to the reader with a special glyph that the following text is an error message:

`

error

'. See section 5.7.4 [Error Special Glyph], page 56.

\begin{example} Begin an example. Indent text, do not �ll, select �xed-width font. Pair

with \end{example}. See section example in \begin{example}.

\exdent line-of-text Remove any indentation a line might have. See section exdent in Undoing

the Indentation of a Line.

\expansion{} Indicate the result of a macro expansion to the reader with a special glyph:

`

7!

'. See section 5.7.2 [expansion], page 55.

\�le{�lename} Highlight the name of a �le or directory. See section �le in \file.

\�nalout Prevent L

a

T

E

X from printing large black warning rectangles beside over-wide lines.

See section 16.6 [Overfull Hboxes], page 143.

\�ndex{entry} Add entry to the index of functions. See section Index Entries in De�ning the

Entries of an Index.

179

\begin{ushleft} Left justify every line but leave the right end ragged. Leave font as is.

Pair with \end{flushleft}. See section ushleft & ushright in \begin{flushleft}

and \begin{flushright}.

\begin{ushright} Right justify every line but leave the left end ragged. Leave font as is.

Pair with \end{flushright}. See section ushleft & ushright in \begin{flushleft}

and \begin{flushright}.

\footnote{text-of-footnote} Enter a footnote. Footnote text is printed at the bottom of the

page by L

a

T

E

X; Info may format in either `End Node' or `Make Node' style. See section

8.1 [Footnotes], page 71.

\footnotestyle{style} Specify an Info �le's footnote style, either `end' for the end node style

or `separate' for the separate node style. See section 8.1 [Footnotes], page 71.

\begin{format} Begin a kind of example. Like \begin{example} or \begin{display},

but do not narrow the margins and do not select the �xed-width font. Pair with

\end{format}. See section example in \begin{example}.

\i{text} Print text in italic font. No e�ect in Info. See section 4.2.3 [Fonts], page 42.

\begin{i�nfo} Begin a stretch of text that will be ignored by L

a

T

E

X when it typesets the

printed manual. The text appears only in the Info �le. Pair with \end{ifinfo}. See

section Conditionals in Conditionally Visible Text.

\begin{iftex} Begin a stretch of text that will not appear in the Info �le, but will be processed

only by L

a

T

E

X. Pair with \end{iftex}. See section Conditionals in Conditionally Visible

Text.

\begin{ignore} Begin a stretch of text that will not appear in either the Info �le or the printed

output. Pair with \end{ignore}. See section Comments in Comments and Ignored Text.

\include{�lename} Incorporate the contents of the �le �lename into the Info �le or printed

document. See section 9.2 [Include Files], page 73.

\inforef{node-name, [entry-name , info-�le-name}] Make a cross reference to an Info �le for

which there is no printed manual. See section inforef in Cross references using \inforef.

\input{�lename} Input the contents of the �le �lename into the Info �le or printed document.

See section 9.1 [Input Files], page 73.

\item Indicate the beginning of a marked paragraph for \begin{itemize} and

\begin{enumerate} and \begin{description} environments.

\begin{itemize} Produce a sequence of indented paragraphs, with a mark inside the left

margin at the beginning of each paragraph. Pair with \end{itemize}. See section 6.1

[Itemize Environment], page 60.

180 APPENDIX D. COMMAND LIST

\kbd{keyboard-characters} Indicate text that consists of characters of input to be typed by

users. See section kbd in \kbd.

\key{key-name} Highlight key-name, a conventional name for a key on a keyboard. See

section key in \key.

\kindex{entry} Add entry to the index of keys. See section Index Entries in De�ning the

Entries of an Index.

\LaTeX{} Insert the logo L

a

T

E

X.

\begin{lisp} Begin an example of Lisp code. Indent text, do not �ll, select �xed-width font.

Pair with \end{lisp}. See section Lisp Example in \begin{lisp}.

\begin{menu} Mark the beginning of a menu of nodes in Info. No e�ect in a printed manual.

Pair with \end{menu}. See section 11.3 [Menu Environment], page 96.

\minus{} Generate a minus sign. See section minus in \minus.

\need{n} Start a new page in a printed manual if fewer than n mils (thousandths of an inch)

remain on the current page. See section need in \need.

\node name, next, previous, up De�ne the beginning of a new node in Info, and serve as a

locator for references for L

a

T

E

X. See section node in \node.

\noindent Prevent text from being indented as if it were a new paragraph. See section

noindent in \noindent.

\nxref{node-name, [entry], [topic], [info-�le], [manual]} Make a reference. In a printed man-

ual, the reference does not start with a `See'. Follow command with a punctuation mark.

Only the �rst argument is mandatory. See section ref in \nxref.

\paragraphindent{indent} Indent paragraphs by indent number of spaces; delete indenta-

tion if the value of indent is 0; and do not change indentation if indent is asis. See

section paragraphindent in Paragraph Indenting.

\pindex{entry} Add entry to the index of programs. See section Index Entries in De�ning

the Entries of an Index.

\point{} Indicate the position of point in a bu�er to the reader with a special glyph: `?'. See

section Point Special Glyph in Indicating Point in a Bu�er.

\print{} Indicate printed output to the reader with a special glyph: `

a

'. See section 5.7.3

[Print Special Glyph], page 55.

\printindex{index-name} Print an alphabetized two-column index in a printed manual or

generate an alphabetized menu of index entries for Info. See section 2.9.2 [Printing an

Index and Generating Menus], page 28.

181

\pxref{node-name, [entry], [topic], [info-�le], [manual]} Make a reference that starts with a

lower case `see' in a printed manual. Use within parentheses only. Do not follow com-

mand with a punctuation mark. The Info formatting commands automatically insert

terminating punctuation as needed, which is why you do not need to insert punctuation.

Only the �rst argument is mandatory. See section pxref in \pxref.

\begin{quotation} Narrow the margins to indicate text that is quoted from another real or

imaginary work, and indent following text. Write command on a line of its own. Pair

with \end{quotation}. See section 5.1 [Quotations], page 48.

\begin{quote} Narrow the margins to indicate text that is quoted from another real or

imaginary work. Write command on a line of its own. Pair with \end{quote}. See

section 5.1 [Quotations], page 48.

\r{text} Print text in roman font. No e�ect in Info. See section 4.2.3 [Fonts], page 42.

\re�ll In Info, re�ll and indent the paragraph after all the other processing has been done. No

e�ect on L

a

T

E

X, which always re�lls. See section 7.4 [Re�lling Paragraphs], page 68.

\result{} Indicate the result of an expression to the reader with a special glyph: `

)

'. See

section result in \result.

\samp{text} Highlight text that is a literal example of a sequence of characters. Used for

single characters, for statements and often for entire shell commands. See section samp

in \code.

\scap{text} Set text in a printed output in the small caps font and set text in the Info

�le in uppercase letters. See section 4.2.2 [Smallcaps], page 41.

\set�lename{info-�le-name} Provide a name for the Info �le. See section Conventions in

General Syntactic Conventions.

\begin{smalllisp} Begin an example of Lisp code. Indent text, do not �ll, select a small

�xed-width font. Pair with \end{lisp}. See section Lisp Example in \begin{lisp}.

\title{title} Provide a title for page headers in a printed manual, and for the titlepage. See

section Conventions in General Syntactic Conventions.

\begin{same} Hold text together that must appear on one printed page. Pair with

\end{same}. Not relevant to Info. See section group in \begin{same}.

\begin{smallexample} Indent text to indicate an example. Do not �ll, select �xed-width

font. In \smallbook format, print text in a smaller font than with \begin{example}.

Pair with \end{smallexample}. See section 5.4 [Examples and Verbatim], page 50.

\smalllisp Begin an example of Lisp code. Indent text, do not �ll, select �xed-width font.

In \smallbook format, print text in a smaller font. Pair with \end{smalllisp}. See

section 5.4 [Examples and Verbatim], page 50.

182 APPENDIX D. COMMAND LIST

\sp{n} Skip n blank lines. See section sp in \sp.

\strong{text} Emphasize text by typesetting it in a bold font for the printed manual and by

surrounding it with asterisks for Info. See section emph & strong in Emphasizing Text.

\subsection{title} Begin a subsection within a section. In a printed manual, the subsection

title is numbered and appears in the table of contents. In Info, the title is underlined

with hyphens. See section 3.6 [Subsection], page 34.

\subsubsection{title} Begin a subsubsection within a subsection. In a printed manual, the

subsubsection title is numbered and appears in the table of contents. In Info, the title is

underlined with periods. See section 3.7 [Subsubsection], page 34.

\syncodeindex{from-index}{into-index} Merge the index named in the �rst argument into

the index named in the second argument, printing the entries from the �rst index in

\code font. See section 13.3 [Combining Indices], page 116.

\synindex{from-index}{into-index} Merge the index named in the �rst argument into the

index named in the second argument. Do not change the font of from-index entries. See

section 13.3 [Combining Indices], page 116.

\t{text} Print text in a fixed-width font. No e�ect in Info. See section 4.2.3 [Fonts], page 42.

\tableofcontents Print a complete table of contents. Has no e�ect in Info, which uses menus

instead. See section 2.6 [Generating a Table of Contents], page 22.

\TeX{} Insert the logo T

E

X.

\begin{tex} Enter L

a

T

E

X completely. Pair with \end{tex}. See section 5.8.1 [Using Ordinary

LaTeX Commands], page 58.

\tindex{entry} Add entry to the index of data types. See section Index Entries in De�ning

the Entries of an Index.

\title{title} In a printed manual, set a title in a larger than normal font and underline it with

a black rule. See section 2.5.1 [Titlepage], page 20.

\today{} Insert the current date. See section 2.4.4 [Custom Headings], page 19.

\unnumbered{title} In a printed manual, begin a chapter that appears without chapter

numbers of any kind. The title appears in the table of contents of a printed manual. In

Info, the title is underlined with asterisks. See section 3.3 [Chapter], page 33.

\unnumberedsec{title} In a printed manual, begin a section that appears without section

numbers of any kind. The title appears in the table of contents of a printed manual. In

Info, the title is underlined with equal signs. See section 3.5 [Section], page 33.

\unnumberedsubsec{title} In a printed manual, begin an unnumbered subsection within a

chapter. The title appears in the table of contents of a printed manual. In Info, the title

is underlined with hyphens. See section 3.6 [Subsection], page 34.

183

\unnumberedsubsubsec{title} In a printed manual, begin an unnumbered subsubsection

within a chapter. The title appears in the table of contents of a printed manual. In Info,

the title is underlined with periods. See section 3.7 [Subsubsection], page 34.

\var{metasyntactic-variable} Highlight a metasyntactic variable, which is something that

stands for another piece of text. Thus, in this entry, the word metasyntactic-variable

is highlighted with \var. See section var in Indicating Metasyntactic Variables.

\vindex{entry} Add entry to the index of variables. See section Index Entries in De�ning

the Entries of an Index.

\vspace{amount} In a printed manual, insert whitespace so as to push text on the remainder

of the page towards the bottom of the page. Used in formatting the copyright page with

the argument `0pt plus 1filll'. (Note spelling of `filll'.) \vspace is ignored for Info.

See section 2.5.2 [The Copyright Page and Printed Permissions], page 21.

\w{text} Prevent text from being split across two lines. Do not end a paragraph that uses \w

with an \refill command. In the L

a

T

E

Xinfo �le, keep text on one line. See section w in

\w.

\xref{node-name, [entry], [topic], [info-�le], [manual]} Make a reference that starts with

`See' in a printed manual. Follow command with a punctuation mark. Only the �rst

argument is mandatory. See section xref in \xref.

184 APPENDIX D. COMMAND LIST

Bibliography

[Lam86] Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley, Reading,

MA, 1986.

[Sta86] Richard Stallman. The GNU Emacs Manual. The Free Software Foundation, 675

Massachusetts Ave., Cambridge MA, 02139, 1986.

[Ste90] Guy~L. Steele. Common Lisp - the Language II. Addison{Wesley, Reading, MA,

1990.

185

186 BIBLIOGRAPHY

Command Index

This is an alphabetical list of all the \-

commands and several variables. To make

the list easier to use, the commands are listed

without their preceding `\'.

'

' 157

*

* (force line break) 65

.

. (true end of sentence) 44

:

: (suppress widening) 43

\

43

{ (single `{') } (single `}')

\(single `\') 43

^

^ 157

`

` 157

A

alwaysre�ll 69

appendix 33

apply 88

author 20

B

b 157

b (bold font) 42

bibliographystyle 27

bu�er-end 79

bullet 45

bye 29

C

c 16, 157

c (comment) 16

caption 63

cartouche 53

center 49

chapter 33

chapter* 33

cindex 115

cite 72

clearpage 22

clisp 154

code 36

comment 16

copyright 22, 45

cpindexbold 116

cpsubindex 116

ctrl 38

D

date 20

defconstx 156

defcv 85

de�n 80

de�nx 156

de�unx 156

de�var 86

defmac 81

defmacx 156

defmethod 87

defop 86

defopt 88

defspec 81

defspecx 156

187

188 COMMAND INDEX

deftp 87

deftypefn 82

deftypefun 83

deftypevar 85

deftypevr 84

defun 81

defvar 82

defvarx 156

defvr 81

defvrx 156

description 61

dfn 40

display 50

dmn 44

dots 45

E

emph 41

end 47, 59

enumerate 60

evenfoot 19

example 50

exdent 53

F

�gure 63

�le 40

�lll 22

�nalout 144

�ndex 115

ushleft 49

ushright 49

fnindexbold 116

foobar 79, 83, 84

footnote 71

footnotestyle 19, 72

format 50

forward-word 78

H

hline 62

I

i 157

i (italic font) 42

i�nfo 57

iftex 57, 58

ignore 16

include 74

Info-validate 149

inforef 110

input 73

item 60, 61

itemize 60

K

kbd 37

key 37

kindex 115

kyindexbold 116

L

LaTeX 45

latex2dvi (shell script) 140

latexindex 139

latexinfo-all-menus-update 131

latexinfo-every-node-update 130

latexinfo-format-bu�er 119, 134

latexinfo-format-region 119, 134

latexinfo-indent-menu-description 133

latexinfo-insert-braces 128

latexinfo-insert-code 128

latexinfo-insert-dfn 128

latexinfo-insert-end 128

latexinfo-insert-example 128

latexinfo-insert-item 128

latexinfo-insert-kbd 128

latexinfo-insert-node 128

latexinfo-insert-node-lines 132

latexinfo-insert-noindent 128

latexinfo-insert-samp 128

latexinfo-insert-var 128

latexinfo-latex-bu�er 135

latexinfo-latex-print 135

latexinfo-latex-region 135

latexinfo-make-menu 130

latexinfo-master-menu 130

latexinfo-multiple-�les-update 132, 133

latexinfo-sequential-node-update 133

latexinfo-show-structure 129, 147

latexinfo-update-node 130

lisp 52

lpr (dvi print command) 141

M

maketitle 20

COMMAND INDEX 189

markboth 19

markright 19

menu 96

minus 45

N

n (normalsize font) 42

need 67

newindex 19

noindent 51

O

occur 148

occur-mode-goto-occurrence 129

oddfoot 19

onecolumn 28

P

page 67

pagenumbering 19

pagestyle 19, 21

paragraphindent 20

pgindexbold 116

pindex 115

printindex 28

pxref 109

Q

quotation 48

quote 48

R

r (Roman font) 42

ref 108

re�ll 68

S

same 67

samp 39

scap (small caps font) 41

section 33

section* 33

set�lename 18

smallverbatim 52

sp (line spacing) 66

strong 41

subsection 34

subsection* 34

subsubsection 34

subsubsection* 34

syncodeindex 116

synindex 117

T

t (typewriter font) 42

table 63

tabular 62

tex 58

thispagestyle 21

tindex 115

title 20

tpindexbold 116

twocolumn 28

U

unnumbered 33

unnumberedsec 33

unnumberedsubsec 34

unnumberedsubsubsec 34

up-list 128

V

var 39

verb 46

verbatim 52

verbatim�le 52

vindex 115

vrindexbold 116

vspace 22

vspace* 22

W

w (prevent line break) 66

X

xref 103

190 COMMAND INDEX

Concept Index

\

.login initialization �le . 122, 143, 165

.pro�le initialization �le . 143

\-commands . 6

TEXINPUTS environment variable . 143, 165

`dir' directory for Info installation . 121

`dir' �le listing . 122

dvi �le . 139

A

A Short Sample LaTeXinfo File . 8

Abbreviations for keys . 37

Adding a new info �le . 122

Advantages of LaTeXinfo over TeXinfo . 4

Alphabetical \-command list . 175

Always Re�lling Paragraphs . 69

Another Info directory . 122

Appendix . 33

Automatically insert nodes, menus . 129

B

Badly referenced nodes . 149

Beginning a LaTeXinfo �le . 15

Beginning line of a LaTeXinfo �le . 18

Black rectangle in hardcopy . 144

Box with rounded corners . 53

Braces, inserting . 43

Breaks in a line . 65

Bu�er formatting and printing . 135

Bullets, inserting . 44

C

Capitalizing index entries . 114

Catching errors with L

a

T

E

X formatting . 146

Catching errors with Info formatting . 145

Catching Formatting Mistakes . 145

191

192 CONCEPT INDEX

Center Environment . 49

Centering a line . 49

Chapter . 33

Chapter structuring . 31

Characteristics of printed manual . 6

Checking for badly referenced nodes . 149

Citations . 72

Cite . 72

Clisp Style . 154

Combining indices . 116

Command de�nitions . 88

Command Index . 187

Command list . 175

Commands to insert single characters . 43

Commands using ordinary L

a

T

E

X . 58

Commands, inserting them . 128

Comments . 16

Compile command for formatting . 142

Concept Index . 191

Conditionally visible text . 57

Conditions for copying LaTeXinfo . 1

Contents, Table of . 22

Contents-like outline of �le structure . 129

Conventions, syntactic . 15

Converting TeXinfo Files into LaTeXinfo Files . 169

Copying conditions . 1

Copying permissions . 26

Copying software . 25

Copyright . 21

Copyright page . 20

Correcting mistakes . 145

Create nodes, menus automatically . 129

Creating an Info �le . 119

Creating an unsplit �le . 150

Creating index entries . 114

Creating indices . 113

Cross reference parts . 102

Cross references . 101

Cross references using \inforef . 110

Cross references using \nxref . 108

Cross references using \pxref . 109

Cross references using \xref . 103

Ctrl . 38

D

Debugging the LaTeXinfo structure . 145

Debugging with L

a

T

E

X formatting . 146

Debugging with Info formatting . 145

CONCEPT INDEX 193

Declaring indices . 115

De�ning indexing entries . 114

De�nition commands . 77

De�nition template . 78

Descriptions, making two-column . 61

diacritical marks . 157

Di�erences from TeXinfo . 169

Di�erent cross reference commands . 101

Dimension formatting . 44

Display formatting . 50

Distribution . 25

Dots, inserting . 44, 45

E

Elisp Style . 77

Ellipsis, inserting . 44

Emacs . 127

Emacs shell, printing from . 141

Emphasizing text . 41

Emphasizing text, font for . 41

End of node footnote style . 71

Ending a LaTeXinfo �le . 26

Entries for an index . 114

Entries, making index . 113

Enumeration . 60

environment variable, LATEXINFO . 160

Equivalence, indicating it . 56

Error message, indicating it . 56

Evaluation special glyph . 54

Example menu . 98

Examples . 50

Expansion, indicating it . 55

Extending LaTeXinfo . 153

F

File beginning . 15, 17

File ending . 26

File Header . 18

File section structure, showing it . 129

Filling paragraphs . 68, 69

Final output . 143

Finding badly referenced nodes . 149

First line of a LaTeXinfo �le . 18

Fonts for indices . 117

Fonts for printing, not Info . 42

Footnotes . 71

Format a dimension . 44

Format and print in LaTeXinfo mode . 141

194 CONCEPT INDEX

Format with the compile command . 142

Formatting a �le for Info . 119

Formatting commands . 6

Formatting examples . 50

Formatting for Info . 134

Formatting for printing . 135

Frequently used commands, inserting . 128

Function de�nitions . 88

G

General syntactic conventions . 15

Generating a Table of Contents . 22

Generating menus with indices . 28

Glyphs for examples . 54

GNU Emacs . 127

GNU Emacs shell, printing from . 141

H

Hardcopy, printing it . 139

Hboxes, overfull . 143

Header for LaTeXinfo �les . 18

Highlighting . 35

Holding text together vertically . 67

I

If text conditionally visible . 57

Ignored text . 16

Include �les . 73

Including text verbatim . 52

Indentation undoing . 53

Indenting paragraphs . 20

Index entries . 114

Index entries, making . 113

Index entry capitalization . 114

Index font types . 115

Indicating commands, de�nitions, etc. 35

Indicating evaluation . 54

Indices . 113

Indices, combining them . 116

Indices, declaring . 115

Indices, printing and menus . 28

Indices, sorting . 139

Indices, two letter names . 117

Indirect sub�les . 119

Info �le installation . 121

Info �le requires \setfilename . 18

Info �le, listing new one . 122

Info �le, splitting manually . 151

CONCEPT INDEX 195

Info �les . 5

Info formatting . 134

Info installed in another directory . 122

Info validating a large �le . 149

Info, creating an on-line �le . 119

Initialization �le for L

a

T

E

X input . 143

Input and Include Files . 73

Input Files . 73

Insert nodes, menus automatically . 129

Inserting \, braces, and periods . 43

Inserting dots . 44, 45

Inserting ellipsis . 44

Inserting frequently used commands . 128

Inserting special characters and symbols . 42

Installing an Info �le . 121

Installing Info in another directory . 122

Itemization . 60

K

Keys, recommended names . 37

L

LaTeX index sorting . 139

LaTeX input initialization . 143

LATEXINFO environment variable . 160

LaTeXinfo �le beginning . 15, 17

LaTeXinfo �le ending . 26

LaTeXinfo �le header . 18

LaTeXinfo �le minimum . 16

LaTeXinfo �le section structure, showing it . 129

LaTeXinfo mode . 127

LaTeXinfo Mode

Summary . 136

LaTeXinfo overview . 3

License agreement . 25

Line breaks . 65

Line breaks, preventing . 66

Line spacing . 66

Lisp example . 52

List of \-Commands . 175

Listing a new info �le . 122

Lists and tables, making them . 59

Local variables . 142

Location of menus . 96

Looking for badly referenced nodes . 149

M

Macro de�nitions . 88

196 CONCEPT INDEX

Making a Bibliography . 27

Making a printed manual . 139

Making a tag table manually . 150

Making breaks . 65

Making cross references . 101

Making Lists Tables and Descriptions . 59

Manual characteristics, printed . 6

Marking text within a paragraph . 35

Marking words and phrases . 35

Master menu . 23

Master menu parts . 24

Menu example . 98

Menu item writing . 97

Menu location . 96

Menus . 96

Menus generated with indices . 28

META key . 38

Meta-syntactic chars for optional parameters . 79

Minimal LaTeXinfo �le . 16

Mistakes, catching . 145

Mode, using Latexinfo . 127

Must have in LaTeXinfo �le . 16

N

Names for indices . 117

Names recommended for keys . 37

Naming a `Top' Node in references . 108

Need space at page bottom . 67

New info �le, listing it . 122

Node line writing . 95

Node, Top . 23

Nodes for menus are short . 96

Nodes in other Info �les . 99

Nodes, Catching Formatting Mistakes . 145

Nodes, checking for badly referenced . 149

O

Occurrences, listing with \occur . 148

Optional and repeated parameters . 79

Ordinary L

a

T

E

X commands, using . 58

Other Info �les' nodes . 99

Outline of �le structure, showing it . 129

Overfull \Hboxes" . 143

Overview of LaTeXinfo . 3

P

Page breaks . 67

Page delimiter in LaTeXinfo mode . 129

CONCEPT INDEX 197

Paragraph indentation . 20

Paragraph, marking text within . 35

Parameters, optional and repeated . 79

Part of �le formatting and printing . 135

Parts of a cross reference . 102

Parts of a master menu . 24

Periods, inserting . 43

Permissions . 26

Permissions, printed . 21

Point, indicating it in a bu�er . 57

Preface . 25

Preparing for use of L

a

T

E

X . 143

Preventing breaks . 65

Print and format in LaTeXinfo mode . 141

Printed manual characteristics . 6

Printed output, indicating it . 55

Printed permissions . 21

Printing a region or bu�er . 135

Printing an index . 28

Printing from an Emacs shell . 141

Printing hardcopy . 139

Problems, catching . 145

Q

Quotations . 48

R

Recommended names for keys . 37

Rectangle, ugly, black in hardcopy . 144

References . 101

References using \inforef . 110

References using \nxref . 108

References using \pxref . 109

References using \xref . 103

Referring to other Info �les . 99

Re�lling paragraphs . 68

Region formatting and printing . 135

Region printing in LaTeXinfo mode . 141

Repeated and optional parameters . 79

Requirements for updating commands . 132

Result of an expression . 54

Running Info-validate . 149

Running an Info formatter . 134

S

Same . 67

Sample function de�nition . 88

Sample LaTeXinfo �le . 8, 18

198 CONCEPT INDEX

Section . 33

Section structure of a �le, showing it . 129

Separate footnote style . 72

Shell, printing from . 141

Short nodes for menus . 96

Showing the section structure of a �le . 129

Showing the structure of a �le . 147

Single characters, commands to insert . 43

Small caps font . 41

Software copying conditions . 25

Sorting indices . 139

Spaces from line to line . 66

Special glyphs . 54

Special insertions . 42

Special typesetting commands . 44

Specifying index entries . 114

Splitting an Info �le manually . 151

Structure of a �le, showing it . 129

Structure, Catching Formatting Mistakes in . 145

Structuring of chapters . 31

styles

clisp . 154

elisp . 77

fvpindex . 153

Subsection . 34

Subsubsection . 34

Syntactic conventions . 15

Syntax of optional and repeated parameters . 79

T

Table of contents . 22

Tables and lists, making them . 59

Tabs; don't use! . 15

Tabular environment . 62

Tag table, making manually . 150

Template for a de�nition . 78

TeX commands, using ordinary . 58

Text conditionally visible . 57

Thin space between number and dimension . 44

Titlepage . 20

Titlepage permissions . 26

Top node . 23

Top node naming for references . 108

Tree structuring . 31

Two letter names for indices . 117

Typesetting commands for dots, etc. 44

U

CONCEPT INDEX 199

Unprocessed text . 16

Unsplit �le creation . 150

Updating nodes and menus . 129

Updating requirements . 132

V

Validating a large �le . 149

Value of an expression, indicating . 54

Verbatim Environment . 52

Vertically holding text together . 67

Visibility of conditional text . 57

W

Words and phrases, marking them . 35

Writing a menu item . 97

Writing a node Line . 95

